About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 731969, 23 pages
http://dx.doi.org/10.1155/2013/731969
Review Article

Navigating Traditional Chinese Medicine Network Pharmacology and Computational Tools

1Longhua Hospital Affiliated to Shanghai University of TCM, Shanghai 200032, China
2Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China

Received 6 June 2013; Accepted 4 July 2013

Academic Editor: Ai-ping Lu

Copyright © 2013 Ming Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Barnes, B. Bloom, and R. L. Nahin, “Complementary and alternative medicine use among adults and children: United States, 2007,” National Health Statistics Reports, no. 12, pp. 1–23, 2008. View at Scopus
  2. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, no. 5235, pp. 467–470, 1995. View at Scopus
  3. M. A. Yildirim, K.-I. Goh, M. E. Cusick, A.-L. Barabási, and M. Vidal, “Drug-target network,” Nature Biotechnology, vol. 25, no. 10, pp. 1119–1126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. V. Paolini, R. H. B. Shapland, W. P. Van Hoorn, J. S. Mason, and A. L. Hopkins, “Global mapping of pharmacological space,” Nature Biotechnology, vol. 24, no. 7, pp. 805–815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Nacher and J.-M. Schwartz, “A global view of drug-therapy interactions,” BMC Pharmacology, vol. 8, article 5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Gregori-Puigjané and J. Mestres, “A ligand-based approach to mining the chemogenomic space of drugs,” Combinatorial Chemistry & High Throughput Screening, vol. 11, no. 8, pp. 669–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Pujol, R. Mosca, J. Farrés, and P. Aloy, “Unveiling the role of network and systems biology in drug discovery,” Trends in Pharmacological Sciences, vol. 31, no. 3, pp. 115–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Li, “Framework and practice of network-based studies for Chinese herbal formula,” Journal of Chinese Integrative Medicine, vol. 5, no. 5, pp. 489–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Li, “Network target: a starting point for traditional Chinese medicine network pharmacology,” Zhongguo Zhongyao Zazhi, vol. 36, no. 15, pp. 2017–2020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Li and B. Zhang, “Traditional Chinese medicine network pharmacology: theory, methodology and application,” Chinese Journal of Natural Medicines, vol. 11, no. 2, pp. 110–120, 2013.
  11. L. Perini, “Explanation in two dimensions: diagrams and biological explanation,” Biology & Philosophy, vol. 20, no. 2-3, pp. 257–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kanehisa, “The KEGG database,” In Silico Simulation of Biological Processes, vol. 247, pp. 91–103, 2002. View at Scopus
  13. T. S. Keshava Prasad, R. Goel, K. Kandasamy et al., “Human protein reference database—2009 update,” Nucleic Acids Research, vol. 37, no. 1, pp. D767–D772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Scopus
  15. F. Zhu, B. Han, P. Kumar et al., “Update of TTD: therapeutic target database,” Nucleic Acids Research, vol. 38, supplement 1, pp. D787–D791, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kamburov, U. Stelzl, H. Lehrach, et al., “The ConsensusPathDB interaction database: 2013 update,” Nucleic Acids Research, vol. 41, no. 1, pp. D793–D800, 2013.
  17. J. Y. Chen, S. R. Mamidipalli, and T. X. Huan, “HAPPI: an online database of comprehensive human annotated and predicted protein interactions,” BMC Genomics, vol. 10, supplement 1, article S16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, “Online Mendelian Inheritance in Man, OMIM,” 2013, http://omim.org/.
  19. C. Knox, V. Law, T. Jewison et al., “DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs,” Nucleic Acids Research, vol. 39, no. 1, pp. D1035–D1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Overington, “ChEMBL: large-scale mapping of medicinal chemistry and pharmacology data to genomes,” Abstracts of Papers of the American Chemical Society, vol. 238, 2009.
  21. R. C. Xue, Z. Fang, M. X. Zhang, et al., “TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis,” Nucleic Acids Research, vol. 41, no. 1, pp. D1089–D1095, 2013.
  22. P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Chatr-Aryamontri, B. J. Breitkreutz, S. Heinicke, et al., “The BioGRID interaction database: 2013 update,” Nucleic Acids Research, vol. 41, no. 1, pp. D816–D823, 2013.
  25. J. Gao, A. S. Ade, V. G. Tarcea et al., “Integrating and annotating the interactome using the MiMI plugin for cytoscape,” Bioinformatics, vol. 25, no. 1, pp. 137–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Pentchev, K. Ono, R. Herwig, T. Ideker, and A. Kamburov, “Evidence mining and novelty assessment of protein-protein interactions with the consensusPathDB plugin for Cytoscape,” Bioinformatics, vol. 26, no. 21, pp. 2796–2797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Hernandez-Toro, C. Prieto, and J. De Las Rivas, “APID2NET: unified interactome graphic analyzer,” Bioinformatics, vol. 23, no. 18, pp. 2495–2497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Vailaya, P. Bluvas, R. Kincaid, A. Kuchinsky, M. Creech, and A. Adler, “An architecture for biological information extraction and representation,” Bioinformatics, vol. 21, no. 4, pp. 430–438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. S. Azmi, “Network pharmacology for cancer drug discovery: are we there yet?” Future Medicinal Chemistry, vol. 4, no. 8, pp. 939–941, 2012.
  30. I. Feldman, A. Rzhetsky, and D. Vitkup, “Network properties of genes harboring inherited disease mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4323–4328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási, “The human disease network,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8685–8690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Z. Xu and Y. J. Li, “Discovering disease-genes by topological features in human protein-protein interaction network,” Bioinformatics, vol. 22, no. 22, pp. 2800–2805, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. T. K. B. Gandhi, J. Zhong, S. Mathivanan et al., “Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets,” Nature Genetics, vol. 38, no. 3, pp. 285–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. M. He, A. S. Smith, J. D. Oslob et al., “Medicine: small-molecule inhibition of TNF-α,” Science, vol. 310, no. 5750, pp. 1022–1025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. N. J. Moerke, H. Aktas, H. Chen et al., “Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G,” Cell, vol. 128, no. 2, pp. 257–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Y. Yu, P. M. Kim, E. Sprecher, V. Trifonov, and M. Gerstein, “The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics,” PLoS Computational Biology, vol. 3, no. 4, pp. 713–720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Li, X. Xu, J. Wang, et al., “A system-level investigation into the mechanisms of Chinese Traditional Medicine: Compound Danshen Formula for cardiovascular disease treatment,” PLoS One, vol. 7, no. 9, Article ID e43918, 2012.
  38. S. Li, B. Zhang, and N. Zhang, “Network target for screening synergistic drug combinations with application to traditional Chinese medicine,” BMC Systems Biology, vol. 5, supplement 1, article S10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Odibat and C. K. Reddy, “Ranking differential hubs in gene co-expression networks,” Journal of Bioinformatics and Computational Biology, vol. 10, no. 1, Article ID 1240002, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Sharan, I. Ulitsky, and R. Shamir, “Network-based prediction of protein function,” Molecular Systems Biology, vol. 3, article 88, 2007. View at Scopus
  41. M. Kotlyar, K. Fortney, and I. Jurisica, “Network-based characterization of drug-regulated genes, drug targets, and toxicity,” Methods, vol. 57, no. 4, pp. 499–507, 2012.
  42. S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, “Walking the interactome for prioritization of candidate disease genes,” American Journal of Human Genetics, vol. 82, no. 4, pp. 949–958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Li and J. C. Patra, “Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network,” Bioinformatics, vol. 26, no. 9, pp. 1219–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. K. Pan, N. Chatterjee, and S. Sinha, “Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system,” PLoS ONE, vol. 5, no. 2, Article ID e9240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Y. Wang, K. J. Xu, J. Song, et al., “Exploring drug combinations in genetic interaction network,” BMC Bioinformatics, vol. 13, supplement 7, article S7, 2012.
  46. A. de Ruiter and C. Oostenbrink, “Protein-ligand binding from distancefield distances and hamiltonian replica exchange simulations,” Journal of Chemical Theory and Computation, vol. 9, no. 2, pp. 883–892, 2013.
  47. J. C. Sun and Z. M. Zhao, “A comparative study of cancer proteins in the human protein-protein interaction network,” BMC Genomics, vol. 11, supplement 1, article S5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Choura and A. Rebai, “Topological features of cancer proteins in the human NR-RTK interaction network,” Journal of Receptors and Signal Transduction, vol. 32, no. 5, pp. 257–262, 2012.
  49. M. L. Hartsperger, F. Blöchl, V. Stümpflen, and F. J. Theis, “Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs,” BMC Bioinformatics, vol. 11, article 522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Liu, P. Lu, X. Zuo et al., “Prediction of network drug target based on improved model of bipartite graph valuation,” Zhongguo Zhongyao Zazhi, vol. 37, no. 2, pp. 125–129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. C. C. Shen and Y. Liu, “A tripartite clustering analysis on microRNA, gene and disease model,” Journal of Bioinformatics and Computational Biology, vol. 10, no. 1, Article ID 1240007, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. L. S. Heath and A. A. Sioson, “Semantics of multimodal network models,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 6, no. 2, pp. 271–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Yao, H. Hao, Y. Li, and S. Li, “Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network,” BMC Systems Biology, vol. 5, article 79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. E. J. Newman, “Detecting community structure in networks,” European Physical Journal B, vol. 38, no. 2, pp. 321–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Du, M. W. Feldman, S. Li, and X. Jin, “An algorithm for detecting community structure of social networks based on prior knowledge and modularity,” Complexity, vol. 12, no. 3, pp. 53–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. H. Zhang, X. M. Ning, and X.-S. Zhang, “Identification of functional modules in a PPI network by clique percolation clustering,” Computational Biology and Chemistry, vol. 30, no. 6, pp. 445–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Jiang, Z. Deng, R. Li, et al., “Basic formulae of Chinese materia medica and its meaning of clinics,” Study Journal of Traditional Chinese Medicine, vol. 19, no. 4, pp. 382–383, 2001.
  58. M. Yang, Y. Tian, J. L. Chen, et al., “Application of bron-kerbosch algorithm for discovery of basic formulas of traditional Chinese medicine,” Zhongguo Zhong Yao Za Zhi, vol. 37, no. 21, pp. 3323–3328, 2012.
  59. S. Li, B. Zhang, D. Jiang, Y. Wei, and N. Zhang, “Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae,” BMC Bioinformatics, vol. 11, supplement 11, article S6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Li, “Network systems underlying traditional Chinese medicine syndrome and herb formula,” Current Bioinformatics, vol. 4, no. 3, pp. 188–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. C.-C. Tu and H. J. Cheng, “Spectral methods for graph bisection problems,” Computers and Operations Research, vol. 25, no. 7-8, pp. 519–530, 1998. View at Scopus
  62. J. Larsson Träff, “Direct graph k-partitioning with a Kernighan-Lin like heuristic,” Operations Research Letters, vol. 34, no. 6, pp. 621–629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Balasundaram, S. S. Chandramouli, and S. Trukhanov, “Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes,” Optimization Letters, vol. 4, no. 3, pp. 311–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Batagelj and M. Zaveršnik, “Fast algorithms for determining (generalized) core groups in social networks,” Advances in Data Analysis and Classification, vol. 5, no. 2, pp. 129–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. X. H. Shi, L. LuoLiang, Y. Wan, and J. Xu, “A finding maximal clique algorithm for predicting loop of protein structure,” Applied Mathematics and Computation, vol. 180, no. 2, pp. 676–682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. E. J. Gardiner, P. J. Artymiuk, and P. Willett, “Clique-detection algorithms for matching three-dimensional molecular structures,” Journal of Molecular Graphics and Modelling, vol. 15, no. 4, pp. 245–253, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. P. J. Artymiuk, R. V. Spriggs, and P. Willett, “Graph theoretic methods for the analysis of structural relationships in biological macromolecules,” Journal of the American Society for Information Science and Technology, vol. 56, no. 5, pp. 518–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Kose, W. Weckwerth, T. Linke, and O. Fiehn, “Visualizing plant metabolomic correlation networks using clique-metabolite matrices,” Bioinformatics, vol. 17, no. 12, pp. 1198–1208, 2001. View at Scopus
  69. C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.
  70. D. X. He, J. Liu, B. Yang, et al., “An ant-based algorithm with local optimization for community detection in large-scale networks,” Advances in Complex Systems, vol. 15, no. 8, 2012.
  71. R. Chandrasekharam, S. Subhramanian, and S. Chaudhury, “Genetic algorithm for node partitioning problem and applications in VLSI design,” IEE Proceedings E, vol. 140, no. 5, pp. 255–260, 1993. View at Scopus
  72. D. Y. Liu, D. Jin, C. Baquero, et al., “Genetic algorithm with a local search strategy for discovering communities in complex networks,” International Journal of Computational Intelligence Systems, vol. 6, no. 2, pp. 354–369, 2013.
  73. J. Hou, G.-F. Yan, and Z. Fan, “Memoryless cooperative graph search based on the simulated annealing algorithm,” Chinese Physics B, vol. 20, no. 4, Article ID 048103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. W. Jiang, C. Y. Jia, and J. Yu, “An efficient community detection method based on rank centrality,” Physica A, vol. 392, no. 9, pp. 2182–2194, 2013.
  75. J. K. Ochab, “Maximal-entropy random walk unifies centrality measures,” Physical Review E, vol. 86, no. 6, 2012.
  76. Q. Shi, H. Zhao, J. Chen, et al., “Study on TCM syndrome identification modes of coronary heart disease based on data mining,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 697028, 11 pages, 2012. View at Publisher · View at Google Scholar
  77. Q. Z. Yan, H. W. Dan, F. T. Shu, et al., “A systems biology-based investigation into the pharmacological mechanisms of Wu Tou Tang acting on rheumatoid arthritis by integrating network analysis,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 548498, 12 pages, 2013. View at Publisher · View at Google Scholar
  78. Y. Ming, J. Lijing, C. Peiqi, et al., “Complex systems entropy network and its application in data mining for Chinese medicine tumor clinics,” World Science and Technology, vol. 14, no. 2, pp. 1376–1384, 2012.
  79. L. Ye, Y. He, H. Ye et al., “Pathway-pathway network-based study of the therapeutic mechanisms by which salvianolic acid B regulates cardiovascular diseases,” Chinese Science Bulletin, vol. 57, no. 14, pp. 1672–1679, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Chen, C. Lu, Q. Zha et al., “A network-based analysis of traditional Chinese medicine cold and hot patterns in rheumatoid arthritis,” Complementary Therapies in Medicine, vol. 20, no. 1-2, pp. 23–30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. He, J. Zhang, X.-H. Shi et al., “Predicting drug-target interaction networks based on functional groups and biological features,” PLoS ONE, vol. 5, no. 3, Article ID e9603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Yu, J. X. Chen, X. Xu, et al., “A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data,” PLoS One, vol. 7, no. 5, Article ID e37608, 2012. View at Publisher · View at Google Scholar
  83. B. Li, X. Xu, X. Wang, et al., “A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease,” International Journal of Molecular Sciences, vol. 13, no. 10, pp. 13501–13520, 2012.
  84. F. Cheng, Y. Zhou, J. Li, et al., “Prediction of chemical-protein interactions: multitarget-QSAR versus computational chemogenomic methods,” Molecular BioSystems, vol. 8, no. 9, pp. 2373–2384, 2012.
  85. B. A. Krueger, T. Weil, and G. Schneider, “Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists,” Journal of Computer-Aided Molecular Design, vol. 23, no. 12, pp. 869–881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. H. Wang, Y. Li, J. Ding, Y. Wang, and Y. Chang, “Prediction of binding affinity for estrogen receptor α modulators using statistical learning approaches,” Molecular Diversity, vol. 12, no. 2, pp. 93–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Nigsch, A. Bender, J. L. Jenkins, and J. B. O. Mitchell, “Ligand-target prediction using winnow and naive bayesian algorithms and the implications of overall performance statistics,” Journal of Chemical Information and Modeling, vol. 48, no. 12, pp. 2313–2325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Bouvier, N. Evrard-Todeschi, J.-P. Girault, and G. Bertho, “Automatic clustering of docking poses in virtual screening process using self-organizing map,” Bioinformatics, vol. 26, no. 1, pp. 53–60, 2010. View at Scopus
  89. G. Schneider, Y. Tanrikulu, and P. Schneider, “Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and off-target prediction,” Future Medicinal Chemistry, vol. 1, no. 1, pp. 213–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. A. E. Cleves and A. N. Jain, “Robust ligand-based modeling of the biological targets of known drugs,” Journal of Medicinal Chemistry, vol. 49, no. 10, pp. 2921–2938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Zhao and S. Li, “Network-based relating pharmacological and genomic spaces for drug target identification,” PLoS ONE, vol. 5, no. 7, Article ID e11764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. N. M. Penrod, R. Cowper-Sal-Lari, and J. H. Moore, “Systems genetics for drug target discovery,” Trends in Pharmacological Sciences, vol. 32, no. 10, pp. 623–630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Cheng, Y. Zhou, W. Li, et al., “Prediction of chemical-protein interactions network with weighted network-based inference method,” PLoS One, vol. 7, no. 7, Article ID e41064, 2012.
  94. F. X. Cheng, C. Liu, J. Jiang, et al., “Prediction of drug-target interactions and drug repositioning via network-based inference,” PLOS Computational Biology, vol. 8, no. 5, Article ID e1002503, 2012.
  95. A. Zanzoni, M. Soler-López, and P. Aloy, “A network medicine approach to human disease,” FEBS Letters, vol. 583, no. 11, pp. 1759–1765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Li, H. M. Chen, C. Liu, et al., “A robust hybrid approach based on estimation of distribution algorithm and support vector machine for hunting candidate disease genes,” The Scientific World Journal, vol. 2013, Article ID 393570, 7 pages, 2013. View at Publisher · View at Google Scholar
  97. Y. N. Zhu, W. Pan, and X. T. Shen, “Support vector machines with disease-gene-centric network penalty for high dimensional microarray data,” Statistics and Its Interface, vol. 2, no. 3, pp. 257–269, 2009.
  98. M. C. Denham and J. C. Whittaker, “A Bayesian approach to disease gene location using allelic association,” Biostatistics, vol. 4, no. 3, pp. 399–409, 2003. View at Scopus
  99. L. Zhang, B. Mukherjee, M. Ghosh, and R. Wu, “Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure,” Statistical Modelling, vol. 6, no. 4, pp. 352–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Podder and T. C. Ghosh, “Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes,” BMC Evolutionary Biology, vol. 12, article 10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. X. Wu, R. Jiang, M. Q. Zhang, et al., “Network-based global inference of human disease genes,” Molecular Systems Biology, vol. 4, article 189, 2008.
  102. S. Li, L. Wu, and Z. Zhang, “Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach,” Bioinformatics, vol. 22, no. 17, pp. 2143–2150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Zhang, X. Song, H. Wang, and X. Zhang, “MIClique: an algorithm to identify differentially coexpressed disease gene subset from microarray data,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 642524, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Bhattacharjee and H. M. Jamil, “WSM: a novel algorithm for subgraph matching in large weighted graphs,” Journal of Intelligent Information Systems, vol. 38, no. 3, pp. 767–784, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. P. G. Sun, L. Gao, and S. Han, “Prediction of human disease-related gene clusters by clustering analysis,” International Journal of Biological Sciences, vol. 7, no. 1, pp. 61–73, 2011. View at Scopus
  106. J. Achenbach, P. Tiikkainen, L. Franke, and E. Proschak, “Computational tools for polypharmacology and repurposing,” Future Medicinal Chemistry, vol. 3, no. 8, pp. 961–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. W. P. Mccormick, N. I. Lyons, and K. Hutcheson, “Distributional properties of Jaccard index of similarity,” Communications in Statistics-Theory and Methods, vol. 21, no. 1, pp. 51–68, 1992.
  108. T. Tanimoto, “IBM internal report,” Tech. Rep., 1957.
  109. J. W. Godden, L. Xue, and J. Bajorath, “Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients,” Journal of Chemical Information and Computer Sciences, vol. 40, no. 1, pp. 163–166, 2000. View at Scopus
  110. Z. X. Meng, D. Z. Shou, Q. C. Chao, et al., “Predicting the drug safety for traditional Chinese medicine through a comparative analysis of withdrawn drugs using pharmacological network,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 256782, 11 pages, 2013. View at Publisher · View at Google Scholar
  111. W. Tao, X. Xu, X. Wang, et al., “Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease,” Journal of Ethnopharmacology, vol. 145, no. 1, pp. 1–10, 2013.
  112. “Jaccard index,” 2013, http://en.wikipedia.org/wiki/Jaccard_index.
  113. H.-Z. Ye, C.-S. Zheng, X.-J. Xu, M.-X. Wu, and X.-X. Liu, “Potential synergistic and multitarget effect of herbal pair Chuanxiong Rhizome-Paeonia Albifora Pall on osteoarthritis disease: a computational pharmacology approach,” Chinese Journal of Integrative Medicine, vol. 17, no. 9, pp. 698–703, 2011. View at Scopus
  114. C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger, “IsoRankN: spectral methods for global alignment of multiple protein networks,” Bioinformatics, vol. 25, no. 12, pp. i253–i258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Kutalik, J. S. Beckmann, and S. Bergmann, “A modular approach for integrative analysis of large-scale gene-expression and drug-response data,” Nature Biotechnology, vol. 26, no. 5, pp. 531–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Zhao and S. Li, “A co-module approach for elucidating drug-disease associations and revealing their molecular basis,” Bioinformatics, vol. 28, no. 7, pp. 955–961, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Li, C. Lu, M. Jiang, et al., “Traditional chinese medicine-based network pharmacology could lead to new multicompound drug discovery,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 149762, 11 pages, 2012. View at Publisher · View at Google Scholar
  118. S. Bergmann, J. Ihmels, and N. Barkai, “Iterative signature algorithm for the analysis of large-scale gene expression data,” Physical Review E, vol. 67, no. 3, 18 pages, 2003. View at Scopus
  119. J. Zhao, P. Yang, F. Li, et al., “Therapeutic effects of astragaloside IV on myocardial injuries: multi-target identification and network analysis,” PLoS One, vol. 7, no. 9, Article ID e44938, 2012.
  120. X. Wang, X. Xu, W. Y. Tao, et al., “A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 519031, 15 pages, 2012. View at Publisher · View at Google Scholar
  121. C. Bohler, H. Radner, M. Ernst, et al., “Rheumatoid arthritis and falls: the influence of disease activity,” Rheumatology, vol. 51, no. 11, pp. 2051–2057, 2012.
  122. J. Liu and R.-L. Liu, “The potential role of Chinese medicine in ameliorating extra-articular manifestations of rheumatoid arthritis,” Chinese Journal of Integrative Medicine, vol. 17, no. 10, pp. 735–737, 2011. View at Scopus
  123. M. Jiang, C. Lu, G. Chen, et al., “Understanding the molecular mechanism of interventions in treating rheumatoid arthritis patients with corresponding traditional chinese medicine patterns based on bioinformatics approach,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 129452, 11 pages, 2012. View at Publisher · View at Google Scholar
  124. B. Zhang, X. Wang, and S. Li, “An integrative platform of TCM network pharmacology and its application on a herbal formula, Qing-Luo-Yin,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 456747, 12 pages, 2013. View at Publisher · View at Google Scholar
  125. D.-X. Kong, X.-J. Li, and H.-Y. Zhang, “Where is the hope for drug discovery? Let history tell the future,” Drug Discovery Today, vol. 14, no. 3-4, pp. 115–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. X. Xu, W. X. Zhang, C. Huang, et al., “A novel chemometric method for the prediction of human oral bioavailability,” International Journal of Molecular Sciences, vol. 13, no. 6, pp. 6964–6982, 2012.
  127. S. Li, Z. Q. Zhang, L. J. Wu, X. G. Zhang, Y. D. Li, and Y. Y. Wang, “Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network,” IET Systems Biology, vol. 1, no. 1, pp. 51–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Ma, C. Tan, H. Zhang, M. Wang, W. Ding, and S. Li, “Bridging the gap between traditional Chinese medicine and systems biology: the connection of Cold Syndrome and NEI network,” Molecular BioSystems, vol. 6, no. 4, pp. 613–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Li, T. Ma, J. Gu, X. Liang, and S. Li, “Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients,” Scientific Reports, vol. 3, article 1543, 2013.
  130. B. Jiang, X. J. Liang, Y. Chen, et al., “Integrating next-generation sequencing and traditional tongue diagnosis to determine tongue coating microbiome,” Scientific Reports, vol. 2, article 936, 2012.
  131. C. Lu, X. Niu, C. Xiao et al., “Network-based gene expression biomarkers for cold and heat patterns of rheumatoid arthritis in traditional chinese medicine,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 203043, 17 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. B. Zhang, L. Liu, S. Zhao, et al., “Vitexicarpin acts as a novel angiogenesis inhibitor and its target network,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 278405, 13 pages, 2013. View at Publisher · View at Google Scholar
  133. A. Zhang, H. Sun, B. Yang, and X. Wang, “Predicting new molecular targets for rhein using network pharmacology,” BMC Systems Biology, vol. 6, article 20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Gu, H. Zhang, L. Chen, S. Xu, G. Yuan, and X. Xu, “Drug-target network and polypharmacology studies of a Traditional Chinese Medicine for type II diabetes mellitus,” Computational Biology and Chemistry, vol. 35, no. 5, pp. 293–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. X. Haiyu, T. Ye, L. Peng, et al., “A computational drug-target network for Yuanhu Zhitong prescription,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 658531, 15 pages, 2013. View at Publisher · View at Google Scholar
  136. Y. Ming, T. Yu, C. JiaLei, et al., “Application of complex systems entropy network for discovering traditional herb-pairs in traditional Chinese medicine prescriptions,” Pharmaceutical Care and Research, vol. 13, no. 2, pp. 89–92, 2013.
  137. S. Z. Run, Z. Z. Xue, L. Y. Nai, et al., “Study on compounding rules of Chinese herb prescriptions for treating syndrome of liver and spleen disharmony by scale-free network,” World Science and Technology, vol. 12, no. 6, pp. 882–887, 2010.
  138. L. Jie, S. L. Hong, H. Wei, et al., “Primary study of characteristics of lung cancer TCM treatment by data ming,” World Science and Technology, vol. 11, no. 5, pp. 753–757, 2009.
  139. K. R. Brown and I. Jurisica, “Online predicted human interaction database,” Bioinformatics, vol. 21, no. 9, pp. 2076–2082, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Franceschini, D. Szklarczyk, S. Frankild, et al., “STRING v9. 1: protein-protein interaction networks, with increased coverage and integration,” Nucleic Acids Research, vol. 41, no. 1, pp. D808–D815, 2013.
  141. Z. T. Gao, H. L. Li, H. L. Zhang et al., “PDTD: a web-accessible protein database for drug target identification,” BMC Bioinformatics, vol. 9, article 104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. W. M. Chan and U. Consortium, “The UniProt Knowledgebase (UniProtKB): a freely accessible, comprehensive and expertly curated protein sequence database,” Genetics Research, vol. 92, no. 1, pp. 78–79, 2010.
  143. M. Whirl-Carrillo, E. M. McDonagh, J. M. Hebert, et al., “Pharmacogenomics knowledge for personalized medicine,” Clinical Pharmacology & Therapeutics, vol. 92, no. 4, pp. 414–417, 2012.
  144. I. Xenarios, Ł. Salwínski, X. J. Duan, P. Higney, S.-M. Kim, and D. Eisenberg, “DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions,” Nucleic Acids Research, vol. 30, no. 1, pp. 303–305, 2002. View at Scopus
  145. H. Huang, X. G. Wu, R. Pandey, et al., “C2Maps: a network pharmacology database with comprehensive disease-gene-drug connectivity relationships,” BMC Genomics, vol. 13, article S17, 2012.
  146. S. Schuierer, L.-C. Tranchevent, U. Dengler, and Y. Moreau, “Large-scale benchmark of endeavour using MetaCore maps,” Bioinformatics, vol. 26, no. 15, pp. 1922–1923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Ekins, A. Bugrim, L. Brovold et al., “Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms,” Xenobiotica, vol. 36, no. 10-11, pp. 877–901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. D. Nishimura, “BioCarta,” Biotech Software & Internet Report, vol. 2, no. 3, pp. 117–120, 2001.
  149. D. Fazekas, M. Koltai, D. Turei, et al., “SignaLink 2-a signaling pathway resource with multi-layered regulatory networks,” BMC Systems Biology, vol. 7, article 7, 2013.
  150. I. Vastrik, P. D'Eustachio, E. Schmidt et al., “Reactome: a knowledge base of biologic pathways and processes,” Genome Biology, vol. 8, no. 3, article R39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Kandasamy, S. Sujatha Mohan, R. Raju et al., “NetPath: a public resource of curated signal transduction pathways,” Genome Biology, vol. 11, no. 1, article r3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. S. A. Forbes, N. Bindal, S. Bamford et al., “COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer,” Nucleic Acids Research, vol. 39, no. 1, pp. D945–D950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. P. N. Robinson, S. Köhler, S. Bauer, D. Seelow, D. Horn, and S. Mundlos, “The human phenotype ontology: a tool for annotating and analyzing human hereditary disease,” American Journal of Human Genetics, vol. 83, no. 5, pp. 610–615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Kuhn, D. Szklarczyk, A. Franceschini, et al., “STITCH 3: zooming in on protein-chemical interactions,” Nucleic Acids Research, vol. 40, no. 1, pp. D876–D880, 2012.
  155. J. Masciocchi, G. Frau, M. Fanton et al., “MMsINC: a large-scale chemoinformatics database,” Nucleic Acids Research, vol. 37, no. 1, pp. D284–D290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. “ChemicalBook,” 2008, http://www.chemicalbook.com/.
  157. S. K. Kjaerulff, L. Wich, J. Kringelum, et al., “ChemProt-2. 0: visual navigation in a disease chemical biology database,” Nucleic Acids Research, vol. 41, no. 1, pp. D464–D469, 2013.
  158. “LookChem,” 2008, http://www.lookchem.com/.
  159. H. E. Pence and A. Williams, “Chemspider: an online chemical information resource,” Journal of Chemical Education, vol. 87, no. 11, pp. 1123–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. H. Ye, L. Ye, H. Kang et al., “HIT: linking herbal active ingredients to targets,” Nucleic Acids Research, vol. 39, no. 1, pp. D1055–D1059, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. X. Fang, L. Shao, H. Zhang, and S. Wang, “CHMIS-C: a comprehensive herbal medicine information system for cancer,” Journal of Medicinal Chemistry, vol. 48, no. 5, pp. 1481–1488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Y.-C. Chen, “TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening In Silico,” PLoS ONE, vol. 6, no. 1, Article ID e15939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. Y.-C. Fang, H.-C. Huang, H.-H. Chen, and H.-F. Juan, “TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining,” BMC Complementary and Alternative Medicine, vol. 8, article 58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. Traditional Chinese Medicine Information Database, 2005, http://tcm.cz3.nus.edu.sg/group/tcm-id/tcmid_ns.asp.
  165. Lab of Systems Pharmacology for Chinese Traditional Medicine, “TcmSP:Traditonal Chinese Medicine Systems Pharmacology Database and Analysis Platform,” 2012, http://tcmspnw.com/login_clearSession.
  166. “Shanghai R&D Public Service Platform,” 2013.
  167. V. Batagelj and A. Mrvar, “Pajek—analysis and visualization of large networks,” Graph Drawing, vol. 2265, pp. 477–478, 2002.
  168. L. A. J. Mueller, K. G. Kugler, A. Graber, F. Emmert-Streib, and M. Dehmer, “Structural measures for network biology using QuACN,” BMC Bioinformatics, vol. 12, no. 1, article 492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. L. A. J. Mueller, K. G. Kugler, A. Dander, A. Graber, and M. Dehmer, “QuACN: an R package for analyzing complex biological networks quantitatively,” Bioinformatics, vol. 27, no. 1, pp. 140–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. M. Li, J.-E. Chen, J.-X. Wang, B. Hu, and G. Chen, “Modifying the DPClus algorithm for identifying protein complexes based on new topological structures,” BMC Bioinformatics, vol. 9, article 398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. J. Gu, Y. Chen, S. Li, and Y. Li, “Identification of responsive gene modules by network-based gene clustering and extending: application to inflammation and angiogenesis,” BMC Systems Biology, vol. 4, article 47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. T. H. Hwang, W. Zhang, M. Q. Xie, J. Liu, and R. Kuang, “Inferring disease and gene set associations with rank coherence in networks,” Bioinformatics, vol. 27, no. 19, pp. 2692–2699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. Y. J. Ding, M. J. Chen, Z. C. Liu, et al., “atBioNet—an integrated network analysis tool for genomics and biomarker discovery,” BMC Genomics, vol. 13, article 325, 2012.
  174. M. Zhang and L. J. Lu, “Investigating the validity of current network analysis on static conglomerate networks by protein network stratification,” BMC Bioinformatics, vol. 11, article 466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. L.-C. Huang, X. Wu, and J. Y. Chen, “Predicting adverse side effects of drugs,” BMC Genomics, vol. 12, supplement 5, article S11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  176. T. van Laarhoven, S. B. Nabuurs, and E. Marchiori, “Gaussian interaction profile kernels for predicting drug-target interaction,” Bioinformatics, vol. 27, no. 21, pp. 3036–3043, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. A. Bureau, J. Dupuis, K. Falls et al., “Identifying SNPs predictive of phenotype using random forests,” Genetic Epidemiology, vol. 28, no. 2, pp. 171–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. H. Strömbergsson and G. J. Kleywegt, “A chemogenomics view on protein-ligand spaces,” BMC Bioinformatics, vol. 10, supplement 6, article S13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. J. Zhao, P. Jiang, and W. Zhang, “Molecular networks for the study of TCM pharmacology,” Briefings in Bioinformatics, vol. 11, no. 4, pp. 417–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. X. Li, L. Wu, X. Fan et al., “Network pharmacology study on major active compounds of Fufang Danshen formula,” Zhongguo Zhongyao Zazhi, vol. 36, no. 21, pp. 2911–2915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  181. F. H. Ming, L. Z. Yan, Z. R. Zhen, et al., “Study on mechanism of blood-activating and stasis-dissolving Herbs on Coronary heart disease in molecular level by network pharmacology,” World Science and Technology, vol. 14, no. 5, pp. 1969–1975, 2012.
  182. F. Z. Yan, W. X. Zhi, Q. A. Hai, et al., “Pharmacodynamic research of spleen- regulating and heart-nourishing formula based on network features,” Traditional Chinese Drug & Research Clinical Pharmacology, vol. 23, no. 1, pp. 25–29, 2012.
  183. X. L. Xian, “Network pharmacology-based prediction of the multi-target capabilities of the compounds in Taohong Siwu decoction, and their application in osteoarthritis,” Experimental and Therapeutic Medicine, pp. 125–132, 2013. View at Publisher · View at Google Scholar
  184. Y. Sun, R. Zhu, H. Ye, et al., “Towards a bioinformatics analysis of anti-Alzheimer's herbal medicines from a target network perspective,” Brief Bioinform, vol. 14, no. 3, pp. 327–343, 2013.
  185. S. T. Ma, C. T. Feng, X. L. Zhang, et al., “The multi-target capabilities of the compounds in a TCM used to treat sepsis and their in silico pharmacology,” Complementary Therapies in Medicine, vol. 21, no. 1, pp. 35–41, 2013.
  186. E. Chan, M. Tan, J. Xin, S. Sudarsanam, and D. E. Johnson, “Interactions between traditional Chinese medicines and Western therapeutics,” Current Opinion in Drug Discovery & Development, vol. 13, no. 1, pp. 50–65, 2010. View at Scopus
  187. Q.-X. Yue, Z.-W. Cao, S.-H. Guan et al., “Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network,” Molecular and Cellular Proteomics, vol. 7, no. 5, pp. 949–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. X. Wang, X. Xu, Y. Li, et al., “Systems pharmacology uncovers Janus functions of botanical drugs: activation of host defense system and inhibition of influenza virus replication,” Integrative Biology, vol. 5, no. 2, pp. 351–371, 2013.
  189. W. Dai, J. X. Chen, P. Lu, et al., “Pathway Pattern-based prediction of active drug components and gene targets from H1N1 influenza's treatment with maxingshigan-yinqiaosan formula,” Molecular BioSystems, vol. 9, no. 3, pp. 375–385, 2013.
  190. H. Sun, A. H. Zhang, G. L. Yan, et al., “Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 75, pp. 173–179, 2013.
  191. X. Wei, C. Liang, F. Qiru, et al., “Action mechanism studies of GuizhiFuling Capsule: based on a bio-network analysis,” Computers and Applied Chemistry, vol. 29, no. 12, pp. 1455–1459, 2012.
  192. H. Yang, L. Xing, M.-G. Zhou, et al., “Network pharmacological research of volatile oil from Zhike Chuanbei Pipa Dropping Pills in treatment of airway inflammation,” Chinese Traditional and Herbal Drugs, vol. 43, no. 6, pp. 1129–1135, 2012.
  193. W. Zhu, X. H. Qiu, X. J. Xu, and C. Lu, “Computational network pharmacological research of Chinese medicinal plants for chronic kidney disease,” Science China Chemistry, vol. 53, no. 11, pp. 2337–2342, 2010. View at Publisher · View at Google Scholar · View at Scopus