About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 787916, 12 pages
Research Article

Achyrocline satureioides (Lam.) D.C. Hydroalcoholic Extract Inhibits Neutrophil Functions Related to Innate Host Defense

1Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580 Bl 13B, 05508-900 São Paulo, SP, Brazil
2Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), University of Vale do Itajaí (UNIVALI), Rua Uruguai, 458, 88302-202 Itajaí, SC, Brazil
3Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, 05508-270 São Paulo, SP, Brazil

Received 28 November 2012; Accepted 31 December 2012

Academic Editor: David Baxter

Copyright © 2013 Eric Diego Barioni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Ferraro, C. Anesini, A. Ouvina et al., “Total phenolic content and antioxidant activity of extracts of Achyrocline satureioides flowers from different zones in Argentina,” Latin American Journal of Pharmacy, vol. 27, no. 4, pp. 626–628, 2008. View at Scopus
  2. J. R. Santin, M. Lemos, L. C. K. Júnior, R. Niero, and S. F. de Andrade, “Antiulcer effects of Achyrocline satureoides (Lam.) DC (Asteraceae) (Marcela), a folk medicine plant, in different experimental models,” Journal of Ethnopharmacology, vol. 130, no. 2, pp. 334–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Gugliucci and T. Menini, “Three different pathways for human LDL oxidation are inhibited in vitro by water extracts of the medicinal herb Achyrocline satureoides,” Life Sciences, vol. 71, no. 6, pp. 693–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Kadarian, A. M. Broussalis, J. Miño et al., “Hepatoprotective activity of Achyrocline satureioides (Lam) D. C,” Pharmacological Research, vol. 45, no. 1, pp. 57–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Arredondo, F. Blasina, C. Echeverry et al., “Cytoprotection by Achyrocline satureioides (Lam) D.C. and some of its main flavonoids against oxidative stress,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 13–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Cosentino, R. Bombelli, E. Carcano et al., “Immunomodulatory properties of Achyrocline satureioides (Lam.) D.C. infusion: a study on human leukocytes,” Journal of Ethnopharmacology, vol. 116, no. 3, pp. 501–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. A. Del Vitto, E. M. Petenatti, M. E. Petenatti, S. M. Mazza, and E. J. Marchevsky, “Major and trace elements contents in crude drug and infusions of two South American species of Achyrocline (Asteraceae) named "marcelas",” Latin American Journal of Pharmacy, vol. 28, no. 4, pp. 552–559, 2009. View at Scopus
  8. K. B. C. De Souza, V. L. Bassani, and E. E. S. Schapoval, “Influence of excipients and technological process on anti-inflammatory activity of quercetin and Achyrocline satureoides (Lam.) D.C. extracts by oral route,” Phytomedicine, vol. 14, no. 2-3, pp. 102–108, 2007.
  9. J. M. Fachinetto, M. D. Bagatini, J. Durigon, A. C. F. Silva, and S. B. Tedesco, “Efeito anti-proliferativo das infusões de Achyrocline satureoides DC, (Asteraceae) sobre o ciclo celular de Allium cepa,” Revista Brasileira De Farmacognosia, vol. 17, no. 1, pp. 49–54, 2007.
  10. C. M. Simoes, E. P. Schenkel, L. Bauer, and A. Langeloh, “Pharmacological investigations on Achyrocline satureioides (Lam.) DC., compositae,” Journal of Ethnopharmacology, vol. 22, no. 3, pp. 281–293, 1988. View at Scopus
  11. J. Puhlmann, U. Knaus, L. Tubaro, W. Schaefer, and H. Wagner, “Immunologically active metallic ion-containing polysaccharides of Achyrocline satureioides,” Phytochemistry, vol. 31, no. 8, pp. 2617–2621, 1992. View at Scopus
  12. J. C. Kagan and R. Medzhitov, “Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling,” Cell, vol. 125, no. 5, pp. 943–955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Peng, T. Cui, Z. L. Sun et al., “Effects of puerariae radix extract on endotoxin receptors and TNF-α expression induced by gut-derived endotoxin in chronic alcoholic liver injury,” Evidence Based in Complementary and Alternative Medicine, vol. 2012, Article ID 234987, 12 pages, 2012. View at Publisher · View at Google Scholar
  14. C. E. Green, D. N. Pearson, R. T. Camphausen, D. E. Staunton, and S. I. Simon, “Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity β2-integrin on neutrophils,” Journal of Immunology, vol. 172, no. 12, pp. 7780–7790, 2004. View at Scopus
  15. D. M. Smalley and K. Ley, “L-selectin: mechanisms and physiological significance of ectodomain cleavage,” Journal of Cellular and Molecular Medicine, vol. 9, no. 2, pp. 255–266, 2005. View at Scopus
  16. K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, “Getting to the site of inflammation: the leukocyte adhesion cascade updated,” Nature Reviews Immunology, vol. 7, no. 9, pp. 678–689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. N. Serhan, S. D. Brain, C. D. Buckley et al., “Resolution of inflammation: state of the art, definitions and terms,” The FASEB Journal, vol. 21, no. 2, pp. 325–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Myers, L. C. McPhail, and R. Snyderman, “Redistribution of protein kinase C activity in human monocytes: correlation with activation of the respiratory burst,” Journal of Immunology, vol. 135, no. 5, pp. 3411–3416, 1985. View at Scopus
  19. Y. Yasui, K. Yamada, S. Takahashi et al., “PMA induces GCMa phosphorylation and alters its stability via the PKC- and ERK-dependent pathway,” Biochemical and Biophysical Research Communications, vol. 417, no. 4, pp. 1127–1132, 2012.
  20. A. R. Tapas, D. M. Sakarkar, and R. B. Kadke, “Flavonoids as nutraceuticals: a review,” Tropical Journal of Pharmaceutical Research, vol. 7, pp. 1089–1099, 2008.
  21. A. García-Lafuente, E. Guillamón, A. Villares, M. A. Rostagno, and J. A. Martínez, “Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease,” Inflammation Research, vol. 58, no. 9, pp. 537–553, 2009.
  22. C. R. Liao, Y. S. Chang, W. H. Peng, S. C. Lai, and Y. L. Ho, “Analgesic and anti-inflammatory activities of the methanol extract of Elaeagnus oldhamii Maxim. in mice,” American Journal of Chinese Medice, vol. 40, no. 3, pp. 581–597, 2012.
  23. T. H. Quang, N. T. Ngan, C. V. Minh et al., “Anti-inflammatory and PPAR transactivational properties of flavonoids from the roots of Sophora flavescens,” Phytotherapy Research, 2012. View at Publisher · View at Google Scholar
  24. B. T. Chen, W. X. Li, R. R. He et al., “Anti-inflammatory effects of a polyphenols-rich extract from tea (Camellia sinensis) flowers in acute and chronic mice models,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 537923, 7 pages, 2012. View at Publisher · View at Google Scholar
  25. M. Kaneko, H. Takimoto, T. Sugiyama, Y. Seki, K. Kawaguchi, and Y. Kumazawa, “Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors,” Immunopharmacology and Immunotoxicology, vol. 30, no. 4, pp. 867–882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. K. Lee, S. Y. Kim, Y. S. Kim, W. H. Lee, D. H. Hwang, and J. Y. Lee, “Suppression of the TRIF-dependent signaling pathway of toll-like receptors by luteolin,” Biochemical Pharmacology, vol. 77, no. 8, pp. 1391–1400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Bhaskar, V. Shalini, and A. Helen, “Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-κB signaling pathway,” Immunobiology, vol. 216, no. 3, pp. 367–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Qiao, X. Zhang, C. Zhu et al., “Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia,” Brain Research, vol. 448, pp. 71–81, 2012.
  29. H. Lundqvist, P. Follin, L. Khalfan, and C. Dahlgren, “Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told,” Journal of Leukocyte Biology, vol. 59, no. 2, pp. 270–279, 1996. View at Scopus
  30. E. S. Suyenaga, E. L. Konrath, R. R. Dresch et al., “Appraisal of the antichemotactic activity of flavonoids on polymorphonuclear neutrophils,” Planta Medica, vol. 77, no. 7, pp. 698–704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Ciz, P. Denev, M. Kratchanova, O. Vasicek, G. Ambrozova, and A. Lojek, “Flavonoids inhibit the respiratory burst of neutrophils in mammals,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 181295, 6 pages, 2012. View at Publisher · View at Google Scholar
  32. A. K. Kiss, A. Kapłon-Cieślicka, K. J. Filipiak, G. Opolski, and M. Naruszewicz, “Ex vivo effects of an Oenothera paradoxa extract on the reactive oxygen species generation and neutral endopeptidase activity in neutrophils from patients after acute myocardial infarction,” Phytotherapy Research, vol. 26, no. 4, pp. 482–487, 2012.
  33. H. R. Liao, J. J. Chen, Y. H. Chien, S. Z. Lin, S. Lin, and C. P. Tseng, “5-Hydroxy-7-methoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils,” Biochemical Pharmacology, vol. 84, no. 2, pp. 182–191, 2012.
  34. S. H. P. Farsky, P. Borelli, R. A. Fock, S. Z. Proto, J. M. C. Ferreira Jr., and S. B. V. Melo, “Chronic blockade of nitric oxide biosynthesis in rats: effect on leukocyte endothelial interaction and on leukocyte recruitment,” Inflammation Research, vol. 53, no. 9, pp. 442–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. C. B. de Lima, E. K. Tamura, T. Montero-Melendez et al., “Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling,” Biochemical and Biophysical Research Communications, vol. 417, no. 2, pp. 918–923, 2012.
  36. F. N. Gavins, “Intravital microscopy: new insights into cellular interactions,” Current Opinion of Pharmacology, vol. 12, no. 5, pp. 601–607, 2012.
  37. E. Van de Vijver, A. Maddalena, Ö. Sanal et al., “Hematologically important mutations: leukocyte adhesion deficiency (first update),” Blood Cells and Molecular Disease, vol. 15, no. 1, pp. 53–61, 2012.
  38. Y. Shimada, M. Hasegawa, Y. Kaburagi et al., “L-selectin or ICAM-1 deficiency reduces an immediate-type hypersensitivity response by preventing mast cell recruitment in repeated elicitation of contact hypersensitivity,” Journal of Immunology, vol. 170, no. 8, pp. 4325–4334, 2003. View at Scopus
  39. Y. Li, J. Brazzell, A. Herrera, and B. Walcheck, “ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding,” Blood, vol. 108, no. 7, pp. 2275–2279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. I. Simon and C. E. Green, “Molecular mechanics and dynamics of leukocyte recruitment during inflammation,” Annals Review of Biomedical Engineering, vol. 7, pp. 151–185, 2005.
  41. S. Y. Yuan, Q. Shen, R. R. Rigor, and M. H. Wu, “Neutrophil transmigration, focal adhesion kinase and endothelial barrier function,” Microvascular Research, vol. 83, no. 1, pp. 82–88, 2012.
  42. M. J. Sanz and P. Kubes, “Neutrophil-active chemokines in in vivo imaging of neutrophil trafficking,” European Journal of Immunology, vol. 42, no. 2, pp. 278–283, 2012.
  43. S. D. Chase, J. L. Magnani, and S. I. Simon, “E-selectin ligands as mechanosensitive receptors on neutrophils in health and disease,” Annals of Biomedical Engineering, vol. 40, no. 4, pp. 849–859, 2012.
  44. J. Palmblad, “The role of granulocytes in inflammation,” Scandinavian Journal of Rheumatology, vol. 13, no. 2, pp. 163–172, 1984. View at Scopus
  45. E. J. Leonard and T. Yoshimura, “Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]),” American Journal of Respiratory Cell and Molecular Biology, vol. 2, no. 6, pp. 479–486, 1990. View at Scopus
  46. S. Koyama, E. Sato, H. Numanami, K. Kubo, S. Nagai, and T. Izumi, “Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 1, pp. 75–84, 2000. View at Scopus
  47. J. Witowski, H. Tayama, K. Ksiek, M. Wanic-Kossowska, T. O. Bender, and A. Jörres, “Human peritoneal fibroblasts are a potent source of neutrophil-targeting cytokines: a key role of IL-1beta stimulation,” Laboratory Investigation, vol. 89, no. 4, pp. 414–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Weng, B. Zhang, S. Asadi et al., “Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans,” PLoS One, vol. 7, no. 3, Article ID e33805, 2012.