About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 830684, 10 pages
http://dx.doi.org/10.1155/2013/830684
Research Article

Freshwater Clam Extract Ameliorates Triglyceride and Cholesterol Metabolism through the Expression of Genes Involved in Hepatic Lipogenesis and Cholesterol Degradation in Rats

1Department of Applied Molecular Biosciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
2Shizenshokken Co. Ltd., 293 Sakai, Bungotakada, Oita 879-0615, Japan
3Sasaki Food Co. Ltd., 276 Sakai, Bungotakada, Oita 879-0615, Japan
4Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita, Oita 870-1192, Japan

Received 10 September 2012; Revised 26 December 2012; Accepted 6 January 2013

Academic Editor: I-Min Liu

Copyright © 2013 Thomas Laurent et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Yu-Poth, G. Zhao, T. Etherton, M. Naglak, S. Jonnalagadda, and P. M. Kris-Etherton, “Effects of the National Cholesterol Education Program's step I and step II dietary intervention programs on cardiovascular disease risk factors: a meta-analysis,” The American Journal of Clinical Nutrition, vol. 69, no. 4, pp. 632–646, 1999. View at Scopus
  2. R. M. Krauss, R. J. Deckelbaum, N. Ernst et al., “Dietary guidelines for healthy American adults: a statement for health professionals from the Nutrition Committee, American Heart Association,” Circulation, vol. 94, no. 7, pp. 1795–1800, 1996. View at Scopus
  3. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. K. Hae, J. K. Hyeong, E. L. Kwang et al., “Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults,” Archives of Internal Medicine, vol. 164, no. 19, pp. 2169–2175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. F. G. S. Toledo, A. D. Sniderman, and D. E. Kelley, “Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes,” Diabetes Care, vol. 29, no. 8, pp. 1845–1850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Adiels, J. Westerbacka, A. Soro-Paavonen et al., “Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance,” Diabetologia, vol. 50, no. 11, pp. 2356–2365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Adiels, M. R. Taskinen, and J. Borén, “Fatty liver, insulin resistance, and dyslipidemia,” Current Diabetes Reports, vol. 8, no. 1, pp. 60–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Chijimatsu, I. Tatsuguchi, K. Abe, H. Oda, and S. Mochizuki, “A freshwater clam (Corbicula fluminea) extract improves cholesterol metabolism in rats fed on a high-cholesterol diet,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 10, pp. 2566–2571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Chijimatsu, I. Tatsuguchi, H. Oda, and S. Mochizuki, “A freshwater clam (Corbicula fluminea) extract reduces cholesterol level and hepatic lipids in normal rats and xenobiotics-induced hypercholesterolemic rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3108–3112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Chijimatsu, M. Umeki, Y. Okuda, K. Yamada, H. Oda, and S. Mochizuki, “The fat and protein fractions of freshwater clam (Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet,” British Journal of Nutrition, vol. 105, no. 4, pp. 526–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. F. M. Sacks, A. Lichtenstein, L. Van Horn, W. Harris, P. Kris-Etherton, and M. Winston, “Soy protein, isoflavones, and cardiovascular health: a summary of a statement for professionals from the American Heart Association Nutrition Committee,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1689–1692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Ascencio, N. Torres, F. Isoard-Acosta, F. J. Gómez-Pérez, R. Hernández-Pando, and A. R. Tovar, “Soy protein affects serum insulin and Hepatic SREBP-1 mRNA and reduces fatty liver in rats,” Journal of Nutrition, vol. 134, no. 3, pp. 522–529, 2004. View at Scopus
  13. L. Azadbakht, M. Kimiagar, Y. Mehrabi et al., “Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women,” The American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 735–741, 2007. View at Scopus
  14. H. Oda, H. Fukui, Y. Hitomi, and A. Yoshida, “Alteration of serum lipoprotein metabolism by polychlorinated biphenyls and methionine in rats fed a soybean protein diet,” Journal of Nutrition, vol. 121, no. 7, pp. 925–933, 1991. View at Scopus
  15. M. Sugano, Y. Yamada, K. Yoshida, Y. Hashimoto, T. Matsuo, and M. Kimoto, “The hypocholesterolemic action of the undigested fraction of soybean protein in rats,” Atherosclerosis, vol. 72, no. 2-3, pp. 115–122, 1988. View at Scopus
  16. S. M. Potter, “Overview of proposed mechanisms for the hypocholesterolemic effect of soy,” Journal of Nutrition, vol. 125, no. 3, supplement, pp. 606S–611S, 1995. View at Scopus
  17. M. J. Ronis, Y. Chen, J. Badeaux, and T. M. Badger, “Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR, and SREBP signaling,” Journal of Nutrition, vol. 139, no. 8, pp. 1431–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Chijimatsu, A. Yamada, H. Miyaki et al., “Effect of freshwater clam (Corbicula fluminea) extract on liver function in rats,” Nippon Shokuhin Kagaku Kogaku Kaishi, vol. 55, no. 2, pp. 63–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Scopus
  20. B. Delaney, R. J. Nicolosi, T. A. Wilson et al., “β-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters,” Journal of Nutrition, vol. 133, no. 2, pp. 468–475, 2003. View at Scopus
  21. M. J. Sheltawy and M. S. Losowsky, “Determination of faecal bile acids by an enzymic method,” Clinica Chimica Acta, vol. 64, no. 2, pp. 127–132, 1975. View at Scopus
  22. P. Chomczynski and N. Sacchi, “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,” Analytical Biochemistry, vol. 162, no. 1, pp. 156–159, 1987. View at Scopus
  23. J. A. Ripperger and U. Schibler, “Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions,” Nature Genetics, vol. 38, no. 3, pp. 369–374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Matsuzaka and H. Shimano, “Elovl6: a new player in fatty acid metabolism and insulin sensitivity,” Journal of Molecular Medicine, vol. 87, no. 4, pp. 379–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Nagaoka, T. Awano, N. Nagata, M. Masaoka, G. Hori, and K. Hashimoto, “Serum cholesterol reduction and cholesterol absorption inhibition in CaCo-2 cells by a soyprotein peptic hydrolyzate,” Bioscience, Biotechnology and Biochemistry, vol. 61, no. 2, pp. 354–356, 1997. View at Scopus
  26. I. Ikeda, M. Kudo, T. Hamada et al., “Dietary soy protein isolate and its undigested high molecular fraction upregulate hepatic ATP-binding cassette transporter G5 and ATP-binding cassette transporter G8 mRNA and increase biliary secretion of cholesterol in rats,” Journal of Nutritional Science and Vitaminology, vol. 55, no. 3, pp. 252–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Cohen and J. M. Friedman, “Leptin and the control of metabolism: role for stearoyl-CoA desaturase-1 (SCD-1),” Journal of Nutrition, vol. 134, no. 9, 2004. View at Scopus
  28. A. Jakobsson, R. Westerberg, and A. Jacobsson, “Fatty acid elongases in mammals: their regulation and roles in metabolism,” Progress in Lipid Research, vol. 45, no. 3, pp. 237–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Yasari, D. Wang, D. Prud'homme, M. Jankowski, J. Gutkowska, and J. M. Lavoie, “Exercise training decreases plasma leptin levels and the expression of hepatic leptin receptor-a, -b, and, -e in rats,” Molecular and Cellular Biochemistry, vol. 324, no. 1-2, pp. 13–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Chu, M. Miyazaki, W. C. Man, and J. M. Ntambi, “Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation,” Molecular and Cellular Biology, vol. 26, no. 18, pp. 6786–6798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Gutiérrez-Juárez, A. Pocai, C. Mulas et al., “Critical role of stearoyl-CoA desaturase—1 (SCD1) in the onset of diet-induced hepatic insulin resistance,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1686–1695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Tovar, I. Torre-Villalvazo, M. Ochoa et al., “Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats,” Journal of Lipid Research, vol. 46, no. 9, pp. 1823–1832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Lavigne, A. Marette, and H. Jacques, “Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats,” American Journal of Physiology, vol. 278, no. 3, pp. E491–E500, 2000. View at Scopus
  34. C. Albala, J. L. Santos, M. Cifuentes et al., “Intestinal FABP2 A54T polymorphism: association with insulin resistance and obesity in women,” Obesity Research, vol. 12, no. 2, pp. 340–345, 2004. View at Scopus
  35. K. Maeda, K. T. Uysal, L. Makowski et al., “Role of the fatty acid binding protein mal1 in obesity and insulin resistance,” Diabetes, vol. 52, no. 2, pp. 300–307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Ge, S. Zhou, C. Hu, H. Lobdell, and P. D. Berk, “Insulin- and leptin-regulated fatty acid uptake plays a key causal role in hepatic steatosis in mice with intact leptin signaling but not in ob/ob or db/db mice,” American Journal of Physiology, vol. 299, no. 4, pp. G855–G866, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Okamoto, S. Kihara, T. Funahashi, Y. Matsuzawa, and P. Libby, “Adiponectin: a key adipocytokine in metabolic syndrome,” Clinical Science, vol. 110, no. 3, pp. 267–278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Nagasawa, K. Fukui, M. Kojima et al., “Divergent effects of soy protein diet on the expression of adipocytokines,” Biochemical and Biophysical Research Communications, vol. 311, no. 4, pp. 909–914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Wang, R. Sato, M. S. Brown, X. Hua, and J. L. Goldstein, “SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis,” Cell, vol. 77, no. 1, pp. 53–62, 1994. View at Scopus
  40. C. R. Yellaturu, X. Deng, E. A. Park, R. Raghow, and M. B. Elam, “Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptionaldown-regulation of insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP)·SREBP-1c complex,” Journal of Biological Chemistry, vol. 284, no. 46, pp. 31726–31734, 2009. View at Publisher · View at Google Scholar · View at Scopus