About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 867578, 9 pages
http://dx.doi.org/10.1155/2013/867578
Research Article

Antioxidant and Antiplatelet Activities in Extracts from Green and Fully Ripe Tomato Fruits (Solanum lycopersicum) and Pomace from Industrial Tomato Processing

1Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Programa de Investigación de Excelencia Interdisciplinaria en Envejecimiento Saludable (PIEI-ES), Universidad de Talca, 3460000 Talca, Chile
2Centro de Estudios en Alimentos Procesados (CEAP), CON ICYT-Regional, Gore Maule, R09I2001 Talca, Chile
3Laboratorio de Síntesis, Instituto de Química de los Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile
4Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology, Hohenheim University, 70001-70619 Stuttgart, Germany
5Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 3460000 Talca, Chile

Received 27 November 2012; Revised 12 January 2013; Accepted 12 January 2013

Academic Editor: Roja Rahimi

Copyright © 2013 Eduardo Fuentes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Mackay and G. A. Mensah, The Atlas of Heart Disease and Stroke, World Health Organization, Geneva, Switzerland, 2004.
  2. AHA Statistical Fact Sheet, International Cardiovascular Disease Statistics, American Heart Association, 2003.
  3. J. Marrugat, P. Solanas, R. D'Agostino et al., “Coronary risk estimation in Spain using a calibrated Framingham function,” Revista Espanola de Cardiologia, vol. 56, no. 3, pp. 253–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Palomo, G. Torres, M. Alarcón, P. Maragaño, et al., “High prevalence of classic cardiovascular risk factors in a population of university students from south central Chile,” Revista Española De Cardiología, vol. 59, pp. 1099–1105, 2006.
  5. L. Dauchet, P. Amouyel, S. Hercberg, and J. Dallongeville, “Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies,” Journal of Nutrition, vol. 136, no. 10, pp. 2588–2593, 2006. View at Scopus
  6. F. J. He, C. A. Nowson, M. Lucas, and G. A. MacGregor, “Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies,” Journal of Human Hypertension, vol. 21, no. 9, pp. 717–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Palomo, M. Gutiérrez, L. Astudillo, C. Rivera, et al., “Efecto antioxidante de frutas y hortalizas de la zona central de Chile,” Revista Chilena De Nutrición, vol. 36, pp. 152–158, 2009.
  8. E. Fuentes, L. Astudillo, M. Gutiérrez, S. Contreras, et al., “Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity,” Blood Coagulation and Fibrinolysis, vol. 23, pp. 109–117, 2012.
  9. Y. M. Hsu, C. H. Lai, C. Y. Chang, C. T. Fan, C. T. Chen, and C. H. Wu, “Characterizing the lipid-lowering effects and antioxidant mechanisms of tomato paste,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 3, pp. 677–685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Burton-Freeman, J. Talbot, E. Park, S. Krishnankutty, and I. Edirisinghe, “Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women,” Molecular Nutrition and Food Research, vol. 56, pp. 622–631, 2012.
  11. G. Riccioni, L. Scotti, E. Di Ilio, V. Bucciarelli, et al., “Lycopene and preclinical carotid atherosclerosis,” Journal of Biological Regulators & Homeostatic Agents, vol. 25, pp. 435–441, 2011.
  12. A. Schieber, F. C. Stintzing, and R. Carle, “By-products of plant food processing as a source of functional compounds—recent developments,” Trends in Food Science and Technology, vol. 12, no. 11, pp. 401–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. Renaud and J. T. Luong-Van, “Seasonal variation in the chemical composition of tropical Australian marine macroalgae,” Journal of Applied Phycology, vol. 18, no. 3–5, pp. 381–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. W. W. Fish, P. Perkins-Veazie, and J. K. Collins, “A quantitative assay for lycopene that utilizes reduced volumes of organic solvents,” Journal of Food Composition and Analysis, vol. 15, no. 3, pp. 309–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998. View at Scopus
  16. P. Molyneux, “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity,” Songklanakarin Journal of Science and Technology, vol. 26, pp. 211–219, 2004.
  17. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. G. V. Born and M. J. Cross, “The aggregation of blood platelets,” The Journal of Physiology, vol. 168, pp. 178–195, 1963. View at Scopus
  19. R. Schweiggert, D. Mezger, F. Schimpf, C. B. Steingass, and R. Carle, “Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato,” Food Chemistry, vol. 135, pp. 2736–2742, 2012.
  20. P. M. Kris-Etherton, K. D. Hecker, A. Bonanome et al., “Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer,” American Journal of Medicine, vol. 113, no. 9, pp. 71S–88S, 2002. View at Scopus
  21. E. Fuentes, I. Castro, L. Astudillo et al., “Bioassay-guided isolation and HPLC determination of bioactive compound that relate to the anti-platelet activity (adhesion, secretion and aggregation) from Solanum lycopersicum,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 147031, 10 pages, 2012. View at Publisher · View at Google Scholar
  22. B. Carlson, D. Knorr, and T. Watkins, “Influence of tomato seed addition on the quality of wheat flour breads,” Journal of Food Science, vol. 46, pp. 1029–1031, 1981.
  23. R. Estruch, M. A. Martínez-González, D. Corella et al., “Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk,” Journal of Epidemiology and Community Health, vol. 63, no. 7, pp. 582–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Ilahy, C. Hdider, M. S. Lenucci, I. Tlili, and G. Dalessandro, “Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars,” Journal of Food Composition and Analysis, vol. 24, no. 4-5, pp. 588–595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Gómez-Romero, A. Segura-Carretero, and A. Fernández-Gutiérrez, “Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit,” Phytochemistry, vol. 71, no. 16, pp. 1848–1864, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Dumas, M. Dadomo, G. Di Lucca, and P. Grolier, “Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes,” Journal of the Science of Food and Agriculture, vol. 83, no. 5, pp. 369–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. George, C. Kaur, D. S. Khurdiya, and H. C. Kapoor, “Antioxidants in tomato (Lycopersium esculentum) as a function of genotype,” Food Chemistry, vol. 84, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Baysal, S. Ersus, and D. A. J. Starmans, “Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5507–5511, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. Dutta-Roy, L. Crosbie, and M. J. Gordon, “Effects of tomato extract on human platelet aggregation in vitro,” Platelets, vol. 12, no. 4, pp. 218–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Yamamoto, T. Taka, K. Yamada et al., “Tomatoes have natural anti-thrombotic effects,” British Journal of Nutrition, vol. 90, no. 6, pp. 1031–1038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Palomo, E. Fuentes, T. Padró, and L. Badimon, “Platelets and atherogenesis: platelet antiaggregating activity and endothelial protection from tomatoes (Solanum lycopersicum L.),” Experimental and Therapeutic Medicine, vol. 3, pp. 577–584, 2012.
  32. M. Fondevila, J. A. Guada, J. Gasa, and C. Castrillo, “Tomato pomace as a protein supplement for growing lambs,” Small Ruminant Research, vol. 13, no. 2, pp. 117–126, 1994. View at Scopus
  33. A. Altan, K. L. McCarthy, and M. Maskan, “Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products,” International Journal of Food Science and Technology, vol. 44, no. 6, pp. 1263–1271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Vági, B. Simándi, K. Vásárhelyiné, H. Daood, et al., “Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products,” The Journal of Supercritical Fluids, vol. 40, pp. 218–226, 2007.
  35. M. Cámara, M. Del Valle, M. Torija, and C. Castilho, “Fatty acid composition of tomato pomace,” Acta Horticulturae, vol. 542, pp. 175–180, 2001.
  36. L. R. Ballou and W. Y. Cheung, “Inhibition of human platelet phospholipase A2 activity by unsaturated fatty acids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 2, pp. 371–375, 1985. View at Scopus
  37. N. Tsantila, H. C. Karantonis, D. N. Perrea et al., “Atherosclerosis regression study in rabbits upon olive pomace polar lipid extract administration,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 20, no. 10, pp. 740–747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. W. Holy, M. Forestier, E. K. Richter, A. Akhmedov, et al., “Dietary α-linolenic acid inhibits arterial thrombus formation, tissue factor expression, and platelet activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, pp. 1772–1780, 2011.
  39. J. E. Freedman, J. H. Farhat, J. Loscalzo, and J. F. Keaney, “α-Tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism,” Circulation, vol. 94, no. 10, pp. 2434–2440, 1996. View at Scopus
  40. T. Murohara, H. Ikeda, Y. Otsuka et al., “Inhibition of platelet adherence to mononuclear cells by α-tocopherol: role of P-selectin,” Circulation, vol. 110, no. 2, pp. 141–148, 2004. View at Publisher · View at Google Scholar · View at Scopus