About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 957030, 13 pages
http://dx.doi.org/10.1155/2013/957030
Research Article

Metabolism of Genipin in Rat and Identification of Metabolites by Using Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Tandem Mass Spectrometry

1Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
2School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
3Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Received 17 October 2012; Accepted 10 February 2013

Academic Editor: Wei Jia

Copyright © 2013 Yue Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Akao, K. Kobashi, and M. Aburada, “Enzymic studies on the animal and intestinal bacterial metabolism of geniposide,” Biological and Pharmaceutical Bulletin, vol. 17, no. 12, pp. 1573–1576, 1994. View at Scopus
  2. Y. S. Yang, T. Zhang, S. C. Yu et al., “Transformation of geniposide into genipin by immobilized β-glucosidase in a two-phase aqueous-organic system,” Molecules, vol. 16, no. 5, pp. 4295–4304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Mailloux, C. N. K. Adjeitey, and M. E. Harper, “Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents,” PLoS ONE, vol. 5, no. 10, Article ID e13289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Cao, Q. Feng, W. Xu et al., “Genipin induced apoptosis associated with activation of the c-Jun NH2-terminal kinase and p53 protein in HeLa cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 8, pp. 1343–1348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Tanaka, M. Yamazaki, and K. Chiba, “Neuroprotective action of genipin on tunicamycin-induced cytotoxicity in neuro2a cells,” Biological and Pharmaceutical Bulletin, vol. 32, no. 7, pp. 1220–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Goto and H. Takikawa, “Effect of genipin on cholestasis induced by estradiol-17β-glucuronide and lithocholate-3-O-glucuornide in rats,” Hepatology Research, vol. 40, no. 5, pp. 524–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. Koo, Y. S. Song, H. J. Kim et al., “Antiinflammatory effects of genipin, an active principle of gardenia,” European Journal of Pharmacology, vol. 495, no. 2-3, pp. 201–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. J. Koo, K. H. Lim, H. J. Jung, and E. H. Park, “Anti-inflammatory evaluation of gardenia extract, geniposide and genipin,” Journal of Ethnopharmacology, vol. 103, no. 3, pp. 496–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. N. Nam, Y. S. Choi, H. J. Jung et al., “Genipin inhibits the inflammatory response of rat brain microglial cells,” International Immunopharmacology, vol. 10, no. 4, pp. 493–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Mwale, M. Iordanova, C. N. Demers, T. Steffen, P. Roughley, and J. Antoniou, “Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering,” Tissue Engineering, vol. 11, no. 1-2, pp. 130–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Harris, E. Lecumberri, and A. Heras, “Chitosan-genipin microspheres for the controlled release of drugs: clarithromycin, tramadol and heparin,” Marine Drugs, vol. 8, no. 6, pp. 1750–1762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Ding, T. Zhang, J. S. Tao, B. Tan, C. R. Guo, and L. Yang, “HPLC-MS/MS method to determine genipin in rat plasma after hydrolysis with sulfatase and its application to a pharmacokinetic study,” Biomedical Chromatography, vol. 26, no. 7, pp. 816–825, 2012. View at Publisher · View at Google Scholar
  13. S. Takeda, T. Endo, and M. Aburada, “Pharmacological studies on iridoid compounds. III. The choleretic mechanism of iridoid compounds,” Journal of Pharmacobio-Dynamics, vol. 4, no. 8, pp. 612–623, 1981. View at Scopus