About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 983609, 10 pages
http://dx.doi.org/10.1155/2013/983609
Research Article

Empetrum nigrum var. japonicum Extract Suppresses Ultraviolet B-Induced Cell Damage via Absorption of Radiation and Inhibition of Oxidative Stress

1School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
2Halla Arboretum, Jeju 690-121, Republic of Korea
3Biospectrum Life Science Institute, Seongnam 442-13, Republic of Korea

Received 5 July 2012; Revised 21 December 2012; Accepted 27 December 2012

Academic Editor: Guillermo Schmeda-Hirschmann

Copyright © 2013 Ki Cheon Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Bais, C. S. Zerefos, C. Meleti, I. C. Ziomas, and K. Tourpali, “Spectral measurements of solar UVB radiation and its relations to total ozone, SO2, and clouds,” Journal of Geophysical Research, vol. 98, no. 3, pp. 5199–5204, 1993. View at Scopus
  2. G. L. Manney, M. L. Santee, M. Rex, et al., “Unprecedented Arctic ozone loss in 2011,” Nature, vol. 478, no. 7370, pp. 469–475, 2011.
  3. R. R. Garcia, “Atmospheric science: an Arctic ozone hole?” Nature, vol. 478, no. 7370, pp. 462–463, 2011.
  4. M. J. Peak, J. G. Peak, M. P. Moehring, and R. B. Webb, “Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region,” Photochemistry and Photobiology, vol. 40, no. 5, pp. 613–620, 1984. View at Scopus
  5. C. Kielbassa, L. Roza, and B. Epe, “Wavelength dependence of oxidative DNA damage induced by UV and visible light,” Carcinogenesis, vol. 18, no. 4, pp. 811–816, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Holick, “Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease,” The American Journal of Clinical Nutrition, vol. 80, no. 6, supplement, pp. 1678S–1688S, 2004. View at Scopus
  7. J. E. Dazard, H. Gal, N. Amariglio, G. Rechavi, E. Domany, and D. Givol, “Genome-wide comparison of human keratinocyte and squamous cell carcinoma responses to UVB irradiation: implications for skin and epithelial cancer,” Oncogene, vol. 22, no. 19, pp. 2993–3006, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Karol, “How environmental agents influence the aging process,” Biomolecules and Therapeutics, vol. 17, no. 2, pp. 113–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Toiron, A. Rumbero, E. Wollenweber, F. J. Arriaga, and M. Bruix, “A new skeletal triterpenoid isolated from Empetrum nigrum,” Tetrahedron Letters, vol. 36, no. 36, pp. 6559–6562, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Jarevång, M. C. Nilsson, A. Wallstedt, G. Odham, and O. Sterner, “A bibenzyl from Empetrum nigrum,” Phytochemistry, vol. 48, no. 5, pp. 893–896, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ogawa, H. Sakakibara, R. Iwata et al., “Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries,” Journal of Agricultural and Food Chemistry, vol. 56, no. 12, pp. 4457–4462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. C. Kim, K. A. Kang, R. Zhang et al., “Risk reduction of ethyl acetate fraction of Empetrum nigrum var. japonicum via antioxidant properties against hydrogen peroxide-induced cell damage,” Journal of Toxicology and Environmental Health A, vol. 72, no. 21-22, pp. 1499–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. C. Kim, I. K. Lee, K. A. Kang et al., “Empetrum nigrum var. japonicum extract suppresses γ-ray radiation-induced cell damage via inhibition of oxidative stress,” The American Journal of Chinese Medicine, vol. 39, no. 1, pp. 161–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Carmichael, W. G. DeGraff, and A. F. Gazdar, “Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing,” Cancer Research, vol. 47, no. 4, pp. 936–942, 1987. View at Scopus
  15. A. R. Rosenkranz, S. Schmaldienst, K. M. Stuhlmeier, W. Chen, W. Knapp, and G. J. Zlabinger, “A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate,” Journal of Immunological Methods, vol. 156, no. 1, pp. 39–45, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Nicoletti, G. Migliorati, M. C. Pagliacci, F. Grignani, and C. Riccardi, “A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry,” Journal of Immunological Methods, vol. 139, no. 2, pp. 271–279, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Cossarizza, M. Baccarani-Contri, G. Kalashnikova, and C. Franceschi, “A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1),” Biochemical and Biophysical Research Communications, vol. 197, no. 1, pp. 40–45, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Okimoto, A. Watanabe, E. Niki, T. Yamashita, and N. Noguchi, “A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes,” FEBS Letters, vol. 474, no. 2-3, pp. 137–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. N. P. Singh, “Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis,” Mutation Research, vol. 455, no. 1-2, pp. 111–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Rajagopalan, S. K. Ranjan, and C. K. K. Nair, “Effect of vinblastine sulfate on γ-radiation-induced DNA single-strand breaks in murine tissues,” Mutation Research, vol. 536, no. 1-2, pp. 15–25, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. H. Lee and J. W. Park, “Protective role of α-phenyl-N-t-butylnitrone against Ionizing radiation in U937 cells and mice,” Cancer Research, vol. 63, no. 20, pp. 6885–6893, 2003. View at Scopus
  22. R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. A. van Laethem, S. van Kelst, S. Lippens et al., “Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes,” The FASEB Journal, vol. 18, no. 15, pp. 1946–1948, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Kulms and T. Schwarz, “Molecular mechanisms involved in UV-induced apoptotic cell death,” Skin Pharmacology and Applied Skin Physiology, vol. 15, no. 5, pp. 342–347, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Kulms and T. Schwarz, “Independent contribution of three different pathways to ultraviolet-B-induced apoptosis,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 837–841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. Heck, A. M. Vetrano, T. M. Mariano, and J. D. Laskin, “UVB light stimulates production of reactive oxygen species: unexpected role for catalase,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22432–22436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ozawa, K. Ferenczi, T. Kikuchi et al., “312-nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions,” Journal of Experimental Medicine, vol. 189, no. 4, pp. 711–718, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Jackson, C. Harwood, M. Thomas, L. Banks, and A. Storey, “Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins,” Genes and Development, vol. 14, no. 23, pp. 3065–3073, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Brenneisen, H. Sies, and K. Scharffetter-Kochanek, “Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events,” Annals of the New York Academy of Sciences, vol. 973, pp. 31–43, 2002. View at Scopus
  30. G. J. Fisher, S. Kang, J. Varani et al., “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology, vol. 138, no. 11, pp. 1462–1470, 2002. View at Scopus
  31. C. F. Garland, F. C. Garland, E. D. Gorham et al., “The role of vitamin D in cancer prevention,” American Journal of Public Health, vol. 96, no. 2, pp. 252–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Katiyar, M. S. Matsui, C. A. Elmets, and H. Mukhtar, “Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin,” Photochemistry and Photobiology, vol. 69, no. 2, pp. 148–153, 1999. View at Scopus
  33. A. Svobodová, J. Psotová, and D. Walterová, “Natural phenolics in the prevention of UV-induced skin damage. A review,” Biomedical Papers of the Medical Faculty of the University Palacky, vol. 147, no. 2, pp. 137–145, 2003. View at Scopus
  34. F. M. Strickland, J. M. Kuchel, and G. M. Halliday, “Natural products as aids for protecting the skin's immune system against UV damage,” Cutis, vol. 74, no. 5, pp. 24–28, 2004. View at Scopus
  35. M. Ding, R. Feng, S. Y. Wang et al., “Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity,” Journal of Biological Chemistry, vol. 281, no. 25, pp. 17359–17368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Bing-Rong, J. Song-Liang, C. Xiao-E et al., “Protective effect of the Baicalin against DNA damage induced by ultraviolet B irradiation to mouse epidermis,” Photodermatology Photoimmunology and Photomedicine, vol. 24, no. 4, pp. 175–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. K. Jung, K. W. Lee, S. Byun, et al., “Myricetin suppresses UVB-induced skin cancer by targeting Fyn,” Cancer Research, vol. 68, no. 14, pp. 6021–6029, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Huang, C. C. Huang, J. Y. Fang et al., “Protective effects of myricetin against ultraviolet-B-induced damage in human keratinocytes,” Toxicology in Vitro, vol. 24, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Nichols and S. K. Katiyar, “Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms,” Archives of Dermatological Research, vol. 302, no. 2, pp. 71–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Kulms, E. Zeise, B. Pöppelmann, and T. Schwarz, “DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way,” Oncogene, vol. 21, no. 38, pp. 5844–5851, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Nys, H. Maes, G. Andrei, R. Snoeck, M. Garmyn, and P. Agostinis, “Skin mild hypoxia enhances killing of UVB-damaged keratinocytes through reactive oxygen species-mediated apoptosis requiring Noxa and Bim,” Free Radical Biology & Medicine, vol. 52, no. 6, pp. 1111–1120, 2012.