About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2014 (2014), Article ID 495840, 12 pages
http://dx.doi.org/10.1155/2014/495840
Research Article

A Network Pharmacology Approach to Determine Active Compounds and Action Mechanisms of Ge-Gen-Qin-Lian Decoction for Treatment of Type 2 Diabetes

1MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
2Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
3Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin 300457, China
4Wuxi Medical School, Jiangnan University, Wuxi 214122, China

Received 23 October 2013; Accepted 11 December 2013; Published 16 January 2014

Academic Editor: Aiping Lu

Copyright © 2014 Huiying Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Federation of Diabetes, IDF diabetes atlas, http://www.diabetesatlas.org/.
  2. F. M. Ashcroft and P. Rorsman, “Diabetes mellitus and the β cell: the last ten years,” Cell, vol. 148, no. 6, pp. 1160–1171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. B. B. Kahn, “Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance,” Cell, vol. 92, no. 5, pp. 593–596, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. R. F. Hamman, “Genetic and environmental determinants of non-insulin-dependent diabetes mellitus (NIDDM),” Diabetes/Metabolism Reviews, vol. 8, no. 4, pp. 287–338, 1992. View at Scopus
  5. A. Bonnefond, P. Froguel, and M. Vaxillaire, “The emerging genetics of type 2 diabetes,” Trends in Molecular Medicine, vol. 16, no. 9, pp. 407–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Prokopenko, M. I. McCarthy, and C. M. Lindgren, “Type 2 diabetes: new genes, new understanding,” Trends in Genetics, vol. 24, no. 12, pp. 613–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Richard and J. M. Stephens, “Emerging roles of JAK-STAT signaling pathways in adipocytes,” Trends in Endocrinology and Metabolism, vol. 22, no. 8, pp. 325–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. Welters and R. N. Kulkarni, “Wnt signaling: relevance to β-cell biology and diabetes,” Trends in Endocrinology and Metabolism, vol. 19, no. 10, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Morral, “Novel targets and therapeutic strategies for type 2 diabetes,” Trends in Endocrinology and Metabolism, vol. 14, no. 4, pp. 169–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. G. Larkins, “New concepts for treatment of non-insulin-dependent diabetes mellitus,” Trends in Endocrinology and Metabolism, vol. 8, no. 5, pp. 187–191, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Pujol, R. Mosca, J. Farrés, and P. Aloy, “Unveiling the role of network and systems biology in drug discovery,” Trends in Pharmacological Sciences, vol. 31, no. 3, pp. 115–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. H. Zhao, F. M. Lian, H. Y. Ji, Q. Zhou, L. Xia, and X. L. Tong, “Clinial examples of treatment for type 2 diabetes by professor Tong Xiao-lin using Ge-Gen-Qin-Lian decoction,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 17, no. 4, pp. 249–251, 2011.
  14. L. H. Zhao, H. Y. Ji, B. W. Ji, J. Song, and X. L. Tong, “Exploration of Ge-Gen-Qin-Lian Decoction's effect on diabetes mellitus in theory,” China Journal of Traditional Chinese Medicine and Pharmacy, vol. 27, no. 2, pp. 280–283, 2012.
  15. W. Zhang, C.-Q. Liu, P.-W. Wang et al., “Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 398–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F.-L. Hsu, I.-M. Liu, D.-H. Kuo, W.-C. Chen, H.-C. Su, and J.-T. Cheng, “Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats,” Journal of Natural Products, vol. 66, no. 6, pp. 788–792, 2003. View at Scopus
  17. Y. M. Liu, Q. J. Feng, X. Niu, Q. Song, X. Zhang, and Y. M. Kang, “Puerarin reduces blood sugar in the diabetic mice and improves hyperlipidemia in rats,” The FASEB Journal, vol. 20, p. A298, 2006.
  18. H.-T. Li, X.-D. Wu, A. K. Davey, and J. Wang, “Antihyperglycemic effects of baicalin on streptozotocin—nicotinamide induced diabetic rats,” Phytotherapy Research, vol. 25, no. 2, pp. 189–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhang, J. Wei, R. Xue et al., “Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression,” Metabolism, vol. 59, no. 2, pp. 285–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Weidner, J. C. de Groot, A. Prasad et al., “Amorfrutins are potent antidiabetic dietary natural products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 19, pp. 7257–7262, 2012. View at Publisher · View at Google Scholar
  21. X.-L. Tong, L.-H. Zhao, F.-M. Lian et al., “Clinical observations on the dose-effect relationship of Gegen Qin Lian Decoction on 54 out-patients with type 2 diabetes,” Journal of Traditional Chinese Medicine, vol. 31, no. 1, pp. 56–59, 2011. View at Scopus
  22. C. H. Zhang, G. L. Xu, Y. H. Liu et al., “Anti-diabetic activities of Ge-Gen-Qin-Lian Decoction in high-fat diet combined with streptozotocin-induced diabetic rats and in 3T-L1 adipocytes,” Phytomedicine, vol. 20, no. 3-4, pp. 3221–3229, 2013.
  23. F. Bai, Y. Xu, J. Chen et al., “Free energy landscape for the binding process of Huperzine A to acetylcholinesterase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 11, pp. 4273–4278, 2013. View at Publisher · View at Google Scholar
  24. S. Ohlson, “Designing transient binding drugs: a new concept for drug discovery,” Drug Discovery Today, vol. 13, no. 9-10, pp. 433–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Li and B. Zhang, “Traditional Chinese medicine network pharmacology: theory, methodology and application,” Chinese Journal of Natural Medicines, vol. 11, no. 2, pp. 110–120, 2013.
  26. A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery,” Nature Chemical Biology, vol. 4, no. 11, pp. 682–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Li, Z. Q. Zhang, L. J. Wu, X. G. Zhang, Y. D. Li, and Y. Y. Wang, “Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network,” IET Systems Biology, vol. 1, no. 1, pp. 51–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Li, “Framework and practice of network-based studies for Chinese herbal formula,” Journal of Chinese Integrative Medicine, vol. 5, no. 5, pp. 489–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Li, “Network systems underlying traditional Chinese medicine syndrome and herb formula,” Current Bioinformatics, vol. 4, no. 3, pp. 188–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Li, B. Zhang, D. Jiang, Y. Wei, and N. Zhang, “Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae,” BMC Bioinformatics, vol. 11, supplement 11, article S6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Li, “Network target: a starting point for traditional Chinese medicine network pharmacology,” Zhongguo Zhongyao Zazhi, vol. 36, no. 15, pp. 2017–2020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Li, B. Zhang, and N. Zhang, “Network target for screening synergistic drug combinations with application to traditional Chinese medicine,” BMC Systems Biology, vol. 5, supplement 1, article S10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. U. Stelzl, U. Worm, M. Lalowski et al., “A human protein-protein interaction network: a resource for annotating the proteome,” Cell, vol. 122, no. 6, pp. 957–968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, “From molecular to modular cell biology,” Nature, vol. 402, no. 6761, pp. C47–C52, 1999. View at Scopus
  36. D. B. Goldstein, “Common genetic variation and human traits,” New England Journal of Medicine, vol. 360, no. 17, pp. 1696–1698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. E. Schadt, “Molecular networks as sensors and drivers of common human diseases,” Nature, vol. 461, no. 7261, pp. 218–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Zhang, X. Wang, and S. Li, “An integrative platform of TCM network pharmacology and its application on a Herbal Formula, Qing-Luo-Yin,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 456747, 12 pages, 2013. View at Publisher · View at Google Scholar
  39. Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant, “PubChem: a public information system for analyzing bioactivities of small molecules,” Nucleic Acids Research, vol. 37, no. 2, pp. W623–W633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. McKusick, “Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders,” Nucleic Acids Research, vol. 33, pp. D514–D517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. D. S. Wishart, C. Knox, A. C. Guo et al., “DrugBank: a knowledgebase for drugs, drug actions and drug targets,” Nucleic Acids Research, vol. 36, no. 1, pp. D901–D906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Zhao and S. Li, “Network-based relating pharmacological and genomic spaces for drug target identification,” PLoS ONE, vol. 5, no. 7, Article ID e11764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. B. Parsons, R. L. Brost, H. Ding et al., “Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways,” Nature Biotechnology, vol. 22, no. 1, pp. 62–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. L. S. Li, N. B. Zhang, and S. Li, “Ranking effects of candidate drugs on biological process by integrating network analysis and Gene Ontology,” Chinese Science Bulletin, vol. 55, no. 26, pp. 2974–2980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Kaiden Student, R. Y. Hsu, and M. D. Lane, “Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes,” Journal of Biological Chemistry, vol. 255, no. 10, pp. 4745–4750, 1980. View at Scopus
  47. B. A. Nelson, K. A. Robinson, and M. G. Buse, “High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes,” Diabetes, vol. 49, no. 6, pp. 981–991, 2000. View at Scopus
  48. H. Kitano, “A robustness-based approach to systems-oriented drug design,” Nature Reviews Drug Discovery, vol. 6, no. 3, pp. 202–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. A. B. Wagner, “SciFinder Scholar 2006: an empirical analysis of research topic query processing,” Journal of Chemical Information and Modeling, vol. 46, no. 2, pp. 767–774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. S.-J. Lee, K. Umano, T. Shibamoto, and K.-G. Lee, “Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties,” Food Chemistry, vol. 91, no. 1, pp. 131–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. L. J. Xu, F. E. Lu, and S. C. Wei, “Use of berberine derivativein preparing medicament for treating type-2 diabetes, adjusting blood sugar and blood fat,” Patents Number: CN100404534C, 2008.
  52. G. Y. Yeh, D. M. Eisenberg, T. J. Kaptchuk, and R. S. Phillips, “Systematic review of herbs and dietary supplements for glycemic control in diabetes,” Diabetes Care, vol. 26, no. 4, pp. 1277–1294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Zhen, B. Chang, M. Li et al., “Anti-diabetic effects of a coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats,” American Journal of Chinese Medicine, vol. 39, no. 1, pp. 53–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. J. C. Li, X. F. Shen, and X. L. Meng, “A traditional Chinese medicine JiuHuangLian (Rhizoma coptidis steamed with rice wine) reduces oxidative stress injury in type 2 diabetic rats,” Food and Chemical Toxicology, vol. 59, pp. 222–229, 2013. View at Publisher · View at Google Scholar
  55. X. F. Jiang, L. J. Wang, X. G. Li, Z. Q. Zhao, and J. Y. Zhu, “Isolation of Jatrorrhizine and Epiberberine in Coptis chinensis and their in vitro Hypoglycemic Effect,” Guizhou Agricultural Sciences, vol. 39, no. 9, pp. 44–46, 2011.
  56. Y. Fu, B. R. Hu, Q. Tang, et al., “Effect of jatrorrhizine, berberine, Huanglian Decoction and compound-mimic prescription on blood glucose in mice,” Chinese Traditional and Herbal Drugs, vol. 36, no. 4, pp. 548–551, 2005.
  57. A. Shirwaikar, K. Rajendran, and I. S. R. Punitha, “Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats,” Journal of Ethnopharmacology, vol. 97, no. 2, pp. 369–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Ali, J. Igoli, C. Clements et al., “Antidiabetic and antimicrobial activities of fractions and compounds isolated from Berberis brevissima Jafri and Berberis parkeriana Schneid,” Bangladesh Journal of Pharmacology, vol. 8, no. 3, pp. 336–342, 2013.
  59. Y. S. Lee, W. S. Kim, K. H. Kim et al., “Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states,” Diabetes, vol. 55, no. 8, pp. 2256–2264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Diengott and I. A. Mirsky, “Hypoglycemic action of indole-3-acetic acid by mouth in patients with diabetes mellitus,” Proceedings of the Society for Experimental Biology and Medicine, vol. 93, no. 1, pp. 109–110, 1956. View at Publisher · View at Google Scholar
  61. M. B. Hadimani, M. K. Purohit, C. Vanampally et al., “Guaifenesin derivatives promote neurite outgrowth and protect diabetic mice from neuropathy,” Journal of Medicinal Chemistry, vol. 56, no. 12, pp. 5071–5078, 2013. View at Publisher · View at Google Scholar
  62. X. Su, F. Pradaux-Caggiano, N. Vicker et al., “Adamantyl ethanone pyridyl derivatives: potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1,” ChemMedChem, vol. 6, no. 9, pp. 1616–1629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Bartosz, Food Oxidants and Antioxidants: Chemical, Biological, and Functional Properties, CRC Press, 2013.
  64. R. Rahimi, S. Nikfar, B. Larijani, and M. Abdollahi, “A review on the role of antioxidants in the management of diabetes and its complications,” Biomedicine and Pharmacotherapy, vol. 59, no. 7, pp. 365–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Jovanovic, D. R. Hassman, B. Gooch et al., “Treatment of type 2 diabetes with a combination regimen of repaglinide plus pioglitazone,” Diabetes Research and Clinical Practice, vol. 63, no. 2, pp. 127–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Li, T. Ma, J. Gu, X. Liang, and S. Li, “Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients,” Scientific Reports, vol. 3, article 1543, 2013.
  67. B. Jiang, X. Liang, Y. Chen et al., “Integrating next-generation sequencing and traditional tongue diagnosis to determine tongue coating microbiome,” Scientific Reports, vol. 2, article 936, 2012.
  68. C. J. Schofield and C. Sutherland, “Disordered insulin secretion in the development of insulin resistance and Type 2 diabetes,” Diabetic Medicine, vol. 29, no. 8, pp. 972–979, 2012. View at Publisher · View at Google Scholar
  69. M. Van Epps-Fung, J. Williford, A. Wells, and R. W. Hardy, “Fatty acid-induced insulin resistance in adipocytes,” Endocrinology, vol. 138, no. 10, pp. 4338–4345, 1997. View at Publisher · View at Google Scholar · View at Scopus