About this Journal Submit a Manuscript Table of Contents
Economics Research International
Volume 2013 (2013), Article ID 521254, 16 pages
http://dx.doi.org/10.1155/2013/521254
Research Article

The Impact of US Biofuels Policy on Agricultural Production and Nitrogen Loads in Alabama

1314 Mitchell College of Business, Department of Economics and Finance, University of South Alabama, Mobile, AL, USA
2National Soil Dynamics Laboratory, United States Department of Agriculture, Agricultural Research Service, 411 S. Donahue Drive, Auburn, AL, USA

Received 13 March 2013; Accepted 29 September 2013

Academic Editor: Silvia Secchi

Copyright © 2013 Ermanno Affuso and Leah M. Duzy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Renewable Fuels Association, “2013 Ethanol Industry Outlook,” 2013, http://ethanolrfa.org/page/-/PDFs/RFA%202013%20Ethanol%20Industry%20Outlook.pdf?nocdn=1.
  2. T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Al-Riffai, B. Dimaranan, and D. Laborde, Global Trade and Environmental Impact Study of the EU Biofuels Mandate, International Food Policy Research Institute for the Directorate General for Trade of the European Commission, Washington, DC, USA, 2010, http://environmentportal.in/files/biofuelsreportec.pdf.
  4. J. Dumortier, D. J. Hayes, M. Carriquiry et al., “Sensitivity of carbon emission estimates from indirect land-use change,” Applied Economic Perspectives and Policy, vol. 33, no. 3, Article ID ppr015, pp. 428–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Fargione, J. Hill, D. Tilman, S. Polasky, and P. Hawthorne, “Land clearing and the biofuel carbon debt,” Science, vol. 319, no. 5867, pp. 1235–1238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Melillo, J. M. Reilly, D. W. Kicklighter et al., “Indirect emissions from biofuels: how important?” Science, vol. 326, no. 5958, pp. 1397–1399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Plevin, M. O'Hare, A. D. Jones, M. S. Torn, and H. K. Gibbs, “Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated,” Environmental Science and Technology, vol. 44, no. 21, pp. 8015–8021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Feng and B. A. Babcock, “Impacts of ethanol on planted acreage in market equilibrium,” American Journal of Agricultural Economics, vol. 92, no. 3, pp. 789–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. S. Adusumilli, R. D. Lacewell, C. R. Taylor, and M. E. Rister, “Aggregate economic impacts of the national bioenergy policy: a review,” BioEnergy Policy Brief, Auburn University, Auburn, Ala, USA, 2010.
  10. R. Leemans, A. Van Amstel, C. Battjes, E. Kreileman, and S. Toet, “The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source,” Global Environmental Change, vol. 6, no. 4, pp. 335–357, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Pimentel, “Limits of biomass utilization,” in Encyclopedia of Physical Science and Technology, R. A. Meyers, Ed., Academic Press, New York, NY, USA, 3rd edition, 2001.
  12. M. Khanna, H. Önal, X. Chen, and H. Huang, “Meeting biofuels targets: implications for land use, greenhouse gas emissions and nitrogen use in Illinois,” in Proceedings of the Environmental and Rural Development Conference, St. Louis, Mo, USA, 2008.
  13. United States Environmental Protection Agency, “Watershed Assessment, Tracking, and Environmental Results: National Summary of State Information,” 2013, http://ofmpub.epa.gov/waters10/attains_nation_cy.control#status_of_data.
  14. T. W. Simpson, A. N. Sharpley, R. W. Howarth, H. W. Paerl, and K. R. Mankin, “The new gold rush: fueling ethanol production while protecting water quality,” Journal of Environmental Quality, vol. 37, no. 2, pp. 318–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. D. Donner and C. J. Kucharik, “Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4513–4518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Secchi, P. W. Gassman, M. Jha, L. Kurkalova, and C. L. Kling, “Potential water quality changes due to corn expansion in the Upper Mississippi River Basin,” Ecological Applications, vol. 21, no. 4, pp. 1068–1084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Secchi, P. W. Gassman, J. R. Williams, and B. A. Babcock, “Corn-based ethanol production and environmental quality: a case of iowa and the conservation reserve program,” Environmental Management, vol. 44, no. 4, pp. 732–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. United States Department of Agriculture, Crop Production Annual Summary (2012), National Agricultural Statistics Service, Washington, DC, USA, 2013, http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1047.
  19. J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams, “Large area hydrologic modeling and assessment part I: model development,” Journal of the American Water Resources Association, vol. 34, no. 1, pp. 73–89, 1998. View at Scopus
  20. S. L. Neitsch, J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams, “Soil and water assessment tool input output file documentation, version 2009,” Technical Report 365, Texas Water Resource Institute, College Station, Tex, USA, 2010.
  21. United States Department of Agriculture, Corn Acreage and Production, 2011, National Agricultural Statistics Service, Washington, DC, USA, 2012, http://www.nass.usda.gov/Statistics_by_State/Alabama/Publications/County_Estimates/index.asp.
  22. United States Department of Agriculture, Geospatial Data Gateway, Natural Resources Conservation Service, Washington, DC, USA, 2013, http://datagateway.nrcs.usda.gov/.
  23. United States Geological Survey, “National Water Information System: Web Interface,” 2013, http://waterdata.usgs.gov/nwis.
  24. United States Department of Agriculture, Climatic Data For the United States, Agricultural Research Service, Grassland Soil and Water Research Laboratory, Washington, DC, USA, 2013, http://ars.usda.gov/Research/docs.htm?docid=19388.
  25. J. G. Arnold, D. N. Moriasi, P. W. Gassman et al., “SWAT: model use, calibration, and validation,” Transactions of the ASABE, vol. 55, no. 4, pp. 1491–1508, 2012.
  26. K. C. Abbaspour, C. A. Johnson, and M. T. van Genuchten, “Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure,” Vadose Zone Journal, vol. 3, no. 4, pp. 1340–1352, 2004. View at Scopus
  27. K. C. Abbaspour, J. Yang, I. Maximov et al., “Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT,” Journal of Hydrology, vol. 333, no. 2–4, pp. 413–430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. C. Abbaspour, SWAT-CUP4: SWAT Calibration and Uncertainty Programs—A User Manual, Eawag Aquatic Research, Dübendorf, Switzerland, 2011, http://www.neprashtechnology.ca/Downloads/SwatCup/Manual/Usermanual_Swat_Cup.pdf.
  29. P. Krause, D. P. Boyle, and F. Bäse, “Comparison of different efficiency criteria for hydrological model assessment,” Advances in Geosciences, vol. 5, pp. 89–97, 2005. View at Scopus
  30. D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of the ASABE, vol. 50, no. 3, pp. 885–900, 2007. View at Scopus
  31. E. Affuso and S. B. Caudill, “A linearization of the maximum entropy formalism using separable programming,” International Journal of Operational Research, 2013.
  32. R. Little and D. Rubin, Statistical Analysis with Missing Data, Wiley, New York, NY, USA, 1987.
  33. National Oceanographic and Atmospheric Administration, Cold and Warm Episodes by Year, National Weather Service, Climate Prediction Center, College Park, Md, USA, 2013, http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.
  34. P. A. V. B. Swamy, “Efficient inference in a random coefficient regression model,” Econometrica, vol. 38, no. 2, pp. 311–323, 1970. View at Publisher · View at Google Scholar
  35. B. H. Baltagi, Econometric Analysis of Panel Data, John Wiley and Sons, Hoboken, NJ, USA, 4th edition, 2008.
  36. E. Affuso, Essays on applied resource economics using bioeconomic optimization models [Ph.D. thesis], Auburn University, Auburn, Ala, USA, 2012.
  37. K. D. Cocks, “Discrete stochastic programming,” Management Science, vol. 15, no. 1, pp. 72–79, 1968. View at Publisher · View at Google Scholar
  38. A. N. Rae, “An empirical application and evaluation of discrete stochastic programming in farm management,” American Journal of Agricultural Economics, vol. 53, no. 4, pp. 625–638, 1968.
  39. A. N. Rae, “Stochastic programming, utility, and sequential decision problems in farm management,” American Journal of Agricultural Economics, vol. 53, no. 3, pp. 448–460, 1971.
  40. J. R. Birge, “The value of the stochastic solution in stochastic linear programs with fixed recourse,” Mathematical Programming, vol. 24, no. 1, pp. 314–325, 1982. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Kall and J. Mayer, Stochastic Linear Programming: Models, Theory, and Computation, Springer, New York, NY, USA, 2005.
  42. E. Affuso and D. Hite, “A model for sustainable land use in biofuel production: an application to the state of Alabama,” Energy Economics, vol. 37, pp. 29–39, 2013. View at Publisher · View at Google Scholar
  43. United States Department of Agriculture, Direct and Counter-Cyclical Payment (DCP) Program, Farm Service Agency, Washington, DC, USA, 2008, http://www.fsa.usda.gov/Internet/FSA_File/dcp2008.pdf.
  44. United States Department of Agriculture, Alabama, State and County Data, 2007. Census of Agriculture, vol. 1 of Geographic Area Series, Part 1, AC-07-A1, United States Department of Agriculture, Washington, DC, USA, 2009.
  45. United States Department of Agriculture, Commodity Costs and Returns, Economic Research Service, Washington, DC, USA, 2012, http://www.ers.usda.gov/data-products/commodity-costs-and-returns.aspx.
  46. United States Department of Agriculture, “Quick Stats 2.0,” National Agricultural Statistics Service, Washington, DC, http://quickstats.nass.usda.gov/.
  47. C. R. Taylor and R. D. Lacewell, “Aggregate economic effects and soy-based biodiesel production,” BioEnergy Policy Brief, Auburn University, Auburn, Ala, USA, 2009.
  48. C. R. Taylor and M. M. Taylor, “A brief description of AGSIM: an econometric-simulation model of the agricultural economy used for biofuel evaluation,” BioEnergy Policy Brief, Auburn University, Auburn, Ala, USA, 2009.
  49. CardnoENTRIX, “Current State of the US Ethanol Industry,” Prepared for United States Department of Energy, 2010, http://www.nrel.gov/analysis/pdfs/doe-02-5025.pdf.
  50. Environmental Protection Agency, “E15 (a blend of gasoline and ethanol),” 2013, http://www.epa.gov/otaq/regs/fuels/additive/e15/index.htm.
  51. Q. Paris, Economic Foundations of Symmetric Programming, Cambridge University Press, Cambridge, UK, 2011.
  52. J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York, NY, USA, 1997.
  53. S. N. Yadav, W. Peterson, and K. W. Easter, “Do farmers overuse nitrogen fertilizer to the detriment of the environment?” Environmental and Resource Economics, vol. 9, no. 3, pp. 323–340, 1997. View at Scopus
  54. Alabama Department of Environmental Management, “Final development of ammonia and organic enrichment/low dissolved oxygen TMDLs, Big Nance Creek,” 2002, http://www.epa.gov/waters/tmdldocs/Big%20Nance%20Creek%20OEDO,%20Ammonia.pdf.
  55. S. Secchi, P. W. Gassman, M. Jha et al., “The cost of cleaner water: assessing agricultural pollution reduction at the watershed scale,” Journal of Soil and Water Conservation, vol. 62, no. 1, pp. 10–21, 2007. View at Scopus
  56. T. Jansson and T. Heckelei, “Chapter 1 estimation of parameters of constrained optimization models,” in New Developments in Computable General Equilibrium Analysis for Trade Policy (Frontiers of Economics and Globalization, Vol. 7), J. Gilbert, Ed., pp. 1–26, Emerald Group Publishing Limited, West Yorkshire, UK, 2010.