About this Journal Submit a Manuscript Table of Contents
Economics Research International
Volume 2014 (2014), Article ID 253527, 9 pages
Research Article

Contribution of Co-Skewness and Co-Kurtosis of the Higher Moment CAPM for Finding the Technical Efficiency

Mathematics Section, School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia

Received 13 June 2013; Revised 22 November 2013; Accepted 9 December 2013; Published 16 January 2014

Academic Editor: Jean Paul Chavas

Copyright © 2014 Md. Zobaer Hasan and Anton Abdulbasah Kamil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rubinstein, “The fundamental theorem of parameter preference security valuation,” Journal of Financial and Quantitative Analysis, vol. 8, no. 1, pp. 61–69, 1973.
  2. A. Kraus and R. Litzenberger, “Skewness preference and the valuation of risky assets,” Journal of Finance, vol. 21, no. 4, pp. 1085–1094, 1976.
  3. H. Fang and T. Y. Lai, “Co-Kurtosis and capital asset pricing,” The Financial Review, vol. 32, no. 2, pp. 293–307, 1997.
  4. S. Hwang and S. E. Satchell, “Modelling emerging market risk premia using higher moments,” International Journal of Finance and Economics, vol. 4, no. 4, pp. 271–296, 1999. View at Scopus
  5. C. R. Harvey and A. Siddique, “Conditional skewness in asset pricing tests,” The Journal of Finance, vol. 55, no. 3, pp. 1263–1295, 2000. View at Scopus
  6. M. K. Brunnermeier, C. Gollier, and J. A. Parker, “Optimal beliefs, asset prices, and the preference for skewed returns,” Tech. Rep. w12940, National Bureau of Economic Research, 2007.
  7. A. Kostakis, K. Muhammad, and A. Siganos, “Higher co-moments and asset pricing on London Stock Exchange,” Journal of Banking and Finance, vol. 36, no. 3, pp. 913–922, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Young Chang, P. Christoffersen, and K. Jacobs, “Market skewness risk and the cross section of stock returns,” Journal of Financial Economics, vol. 107, no. 1, pp. 46–68, 2012.
  9. B. Carmichael and A. Coen, “Asset pricing with skewed-normal return,” Finance Research Letters, vol. 10, no. 2, pp. 50–57, 2013.
  10. M. M. Alam, K. A. Alam, and M. G. S. Uddin, “Market depth and risk return analysis of dhaka stock exchange: an empirical test of market efficiency,” ASA University Review, vol. 1, pp. 93–101, 2008.
  11. M. H. Ali, S. Islam, and M. M. Chowdhury, “Test of CAPM in emerging stock markets: a study on Dhaka stock exchange. The Cost and Management,” 2010.
  12. A. T. Mollik and Md. K. Bepari, “Instability of stock beta in Dhaka Stock Exchange, Bangladesh,” Managerial Finance, vol. 36, no. 10, pp. 886–902, 2010.
  13. A. N. Berger and D. B. Humphrey, “Efficiency of financial institutions: international survey and directions for future research,” European Journal of Operational Research, vol. 98, no. 2, pp. 175–212, 1997. View at Scopus
  14. P. W. Bauer, A. N. Berger, G. D. Ferrier, and D. B. Humphrey, “Consistency conditions for regulatory analysis of financial institutions: a comparison of frontier efficiency methods,” Journal of Economics and Business, vol. 50, no. 2, pp. 85–114, 1998. View at Scopus
  15. G. D. Ferrier and C. A. K. Lovell, “Measuring cost efficiency in banking. Econometric and linear programming evidence,” Journal of Econometrics, vol. 46, no. 1-2, pp. 229–245, 1990. View at Scopus
  16. A. Resti, “Evaluating the cost-efficiency of the Italian banking system: what can be learned from the joint application of parametric and non-parametric techniques,” Journal of Banking and Finance, vol. 21, no. 2, pp. 221–250, 1997. View at Scopus
  17. Y. Altunbas, L. Evans, and P. Molyneux, “Bank ownership and efficiency,” Journal of Money, Credit and Banking, vol. 33, no. 4, pp. 926–954, 2001. View at Scopus
  18. L. Weill, “Measuring cost efficiency in European banking: a comparison of frontier techniques,” Journal of Productivity Analysis, vol. 21, no. 2, pp. 133–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Fecher, D. Kessler, S. Perelman, and P. Pestieau, “Productive performance of the French insurance industry,” Journal of Productivity Analysis, vol. 4, no. 1-2, pp. 77–93, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Cummins and H. Zi, “Comparison of frontier efficiency methods: an application to the U.S. life insurance industry,” Journal of Productivity Analysis, vol. 10, no. 2, pp. 131–152, 1998. View at Scopus
  21. S. Kasman and E. Turgutlu, “A Comparison of Chance-constrained DEA and Stochastic Frontier Analysis: an Application to the Turkish Life Insurance Industry,” Working Papers, 2007.
  22. D. Aigner, C. A. K. Lovell, and P. Schmidt, “Formulation and estimation of stochastic frontier production function models,” Journal of Econometrics, vol. 6, no. 1, pp. 21–37, 1977. View at Scopus
  23. J. E. Kirkley, D. Squires, and I. E. Strand, “Assessing technical efficiency in commercial fisheries: the mid-Atlantic sea scallop fishery,” American Journal of Agricultural Economics, vol. 77, no. 3, pp. 686–697, 1995. View at Scopus
  24. A. M. Yuengert, “The measurement of efficiency in life insurance: estimates of a mixed normal-gamma error model,” Journal of Banking and Finance, vol. 17, no. 2-3, pp. 483–496, 1993. View at Scopus
  25. L. J. Mester, “A study of bank efficiency taking into account risk-preferences,” Journal of Banking and Finance, vol. 20, no. 6, pp. 1025–1045, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Hjalmarsson, S. C. Kumbhakar, and A. Heshmati, “DEA, DFA and SFA: a comparison,” Journal of Productivity Analysis, vol. 7, no. 2-3, pp. 303–327, 1996. View at Scopus
  27. A. T. Mollik and Md. K. Bepari, “Risk-return trade-off in dhaka stock exchange, Bangladesh: an emerging market evidence,” 2011. View at Publisher · View at Google Scholar
  28. M. G. S. Uddin and A. K. M. Nabiul Khoda, “An Empirical examination of random walk hypothesis for Dhaka stock exchange: evidence from pharmaceutical sector of Bangladesh,” International Research Journal of Finance and Economics, vol. 33, pp. 87–100, 2009. View at Scopus
  29. D. C.-H. Hung, M. Shackleton, and X. Xu, “CAPM, higher co-moment and factor models of UK stock returns,” Journal of Business Finance and Accounting, vol. 31, no. 1-2, pp. 87–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. E. F. Fama and J. D. MacBeth, “Risk, return, and equilibrium: empirical tests,” Journal of Political Economy, vol. 81, no. 3, pp. 607–636, 1973.
  31. W. Meeusen and J. van Den Broeck, “Efficiency estimation from Cobb-Douglas production functions with composed error,” International Economic Review, vol. 18, no. 2, pp. 435–444, 1977.
  32. G. E. Battese and T. J. Coelli, “Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India,” Journal of Productivity Analysis, vol. 3, no. 1-2, pp. 153–169, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. T. J. Coelli, D. S. Prasada Rao, and G. E. Battese, An Introduction to Efficiency and Productivity Analysis, Kluwer Academic Publishers, London, UK, 1998.
  34. W. H. Greene, “A Gamma-distributed stochastic frontier model,” Journal of Econometrics, vol. 46, no. 1-2, pp. 141–163, 1990. View at Scopus
  35. P. W. Bauer, “Recent developments in the econometric estimation of frontiers,” Journal of Econometrics, vol. 46, no. 1-2, pp. 39–56, 1990. View at Scopus
  36. G. E. Battese and T. J. Coelli, “Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data,” Journal of Econometrics, vol. 38, no. 3, pp. 387–399, 1988. View at Scopus
  37. T. J. Coelli, “A Guide to FRONTIER version 4.1: a computer program for stochastic frontier production and cost function estimation,” CEPA Working Papers 7/96, School of Economics, University of New England, Armidale, Australia, 1996.
  38. N. H. N. Mustapha, “Technical efficiency for rubber smallholders under RISDA's supervisory system using stochastic frontier analysis,” Journal of Sustainability Science and Management, vol. 6, no. 1, pp. 156–168, 2011. View at Scopus
  39. A. Wadud and B. White, “Farm household efficiency in Bangladesh: a comparison of stochastic frontier and DEA methods,” Applied Economics, vol. 32, no. 13, pp. 1665–1673, 2000. View at Scopus
  40. M. Ahmad and B. E. Bravo-Ureta, “Technical efficiency measures for dairy farms using panel data: a comparison of alternative model specifications,” Journal of Productivity Analysis, vol. 7, no. 4, pp. 399–415, 1996. View at Scopus
  41. R. Villano and E. Fleming, “Technical inefficiency and production risk in rice farming: evidence from Central Luzon Philippines,” Asian Economic Journal, vol. 20, no. 1, pp. 29–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Kodde and A. C. Palm, “Wald criteria for jointly testing equality and inequality restrictions,” Econometrica, vol. 54, pp. 1243–1248, 1986.
  43. E. Taymaz and G. Saatçi, “Technical change and efficiency in Turkish manufacturing industries,” Journal of Productivity Analysis, vol. 8, no. 4, pp. 461–475, 1997. View at Scopus
  44. P. E. Perera, Behavioral characteristics of the stock market in Sri Lanka: evidence from some test of return predictability at the Colombo Stock Exchange [Ph.D. thesis], Temple University, Philadelphia, Pa, USA, 1995.
  45. S. Claessens, S. Dasgupta, and J. D. Glen, “The cross-section of stock returns: evidence from the emerging markets,” World Bank Publications 1505, 1995.
  46. M. Z. Hasan, A. A. Kamil, A. Mustafa, and M. A. Baten, “Measuring Dhaka Stock exchange market efficiency: a stochastic frontier analysis,” African Journal of Business Management, vol. 5, no. 22, pp. 8891–8901, 2011.
  47. M. M. Islam and J. L. Gomes, “The day-of-the-week effects in less-developed countries’ markets: the case of Bangladesh,” International Advances in Economic Research, vol. 5, no. 3, p. 397, 1999.