About this Journal Submit a Manuscript Table of Contents
Enzyme Research
Volume 2011 (2011), Article ID 308730, 9 pages
http://dx.doi.org/10.4061/2011/308730
Review Article

Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential

1Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong 271018, China
2Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20521 Turku, Finland

Received 6 June 2011; Revised 5 September 2011; Accepted 7 September 2011

Academic Editor: D. M. G. Freire

Copyright © 2011 Duo-Chuan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Wilson, “Cellulases and biofuels,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 295–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. K. Sukumaran, V. J. Surender, R. Sindhu et al., “Lignocellulosic ethanol in India: prospects, challenges and feedstock availability,” Bioresource Technology, vol. 101, no. 13, pp. 4826–4833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Vlasenko, M. Schülein, J. Cherry, and F. Xu, “Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases,” Bioresource Technology, vol. 101, no. 7, pp. 2405–2411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Maheshwari, G. Bharadwaj, and M. K. Bhat, “Thermophilic fungi: their physiology and enzymes,” Microbiology and Molecular Biology Reviews, vol. 64, no. 3, pp. 461–488, 2000. View at Scopus
  5. M. Suto and F. Tomita, “Induction and catabolite repression mechanisms of cellulase in fungi,” Journal of Bioscience and Bioengineering, vol. 92, no. 4, pp. 305–311, 2001. View at Publisher · View at Google Scholar
  6. P. G. Murray, C. M. Collins, A. Grassick, and M. G. Tuohy, “Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product,” Biochemical and Biophysical Research Communications, vol. 301, no. 2, pp. 280–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Grassick, P. G. Murray, R. Thompson et al., “Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii,” European Journal of Biochemistry, vol. 271, no. 22, pp. 4495–4506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Pocas-Fonseca, I. Silva-Pereira, B. B. Rocha, and M. D. O. Azevedo, “Substrate-dependent differential expression of humicola grisea var. thermoidea cellobiohydrolase genes,” Canadian Journal of Microbiology, vol. 46, no. 8, pp. 749–752, 2000. View at Scopus
  9. C. M. Collins, P. G. Murray, S. Denman et al., “Molecular cloning and expression analysis of two distinct β-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii,” Mycological Research, vol. 111, no. 7, pp. 840–849, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Benko, E. Drahos, Z. Szengyel, T. Puranen, J. Vehmaanpera, and K. Reczey, “Thermoascus aurantiacus CBHI/Cel7A production in Trichoderma reesei on alternative carbon sources,” Applied Biochemistry and Biotechnology, vol. 137–140, no. 1–12, pp. 195–204, 2007. View at Publisher · View at Google Scholar
  11. M. Ilmen, A. Saloheimo, M. L. Onnela, and M. E. Penttila, “Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei,” Applied and Environmental Microbiology, vol. 63, no. 4, pp. 1298–1306, 1997.
  12. T. Furukawa, Y. Shida, N. Kitagami et al., “Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei,” Fungal Genetics and Biology, vol. 46, no. 8, pp. 564–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Soni and R. Soni, “Regulation of cellulase synthesis in Chaetomium erraticum,” BioResources, vol. 5, no. 1, pp. 81–98, 2010. View at Scopus
  14. R. Kumar, S. Singh, and O. V. Singh, “Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 5, pp. 377–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. P. Voutilainen, T. Puranen, M. Siika-Aho, et al., “Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases,” Biotechnology and Bioengineering, vol. 101, pp. 515–528, 2008.
  16. Y. L. Li, H. Li, A. N. Li, and D. C. Li, “Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris,” Journal of Applied Microbiology, vol. 106, no. 6, pp. 1867–1875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Takashima, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi, “Molecular cloning and expression of the novel fungal β-glucosidase genes from Humicola grisea and Trichoderma reesei,” Journal of Biochemistry, vol. 125, no. 4, pp. 728–736, 1999. View at Scopus
  18. S. Takashima, H. Iikura, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi, “Comparison of gene structures and enzymatic properties between two endoglucanases from Humicola grisea,” Journal of Biotechnology, vol. 67, no. 2-3, pp. 85–97, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Takashima, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi, “Cloning, sequencing, and expression of the cellulase genes of Humicola grisea var. thermoidea,” Journal of Biotechnology, vol. 50, no. 2-3, pp. 137–147, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Moriya, M. Watanabe, N. Sumida, K. Okakura, and T. Murakami, “Cloning and overexpression of the avi2 gene encoding a major cellulase produced by Humicola insolens FERM BP-5977,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 6, pp. 1434–1437, 2003.
  21. P. Heinzelman, C. D. Snow, I. Wu et al., “A family of thermostable fungal cellulases created by structure-guided recombination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5610–5615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Heinzelman, C. D. Snow, M. A. Smith et al., “SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26229–26233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Haakana, A. Miettinen-Oinonen, V. Joutsjoki, A. Mantyla, P. Suominen, and J. Vehmaanperä, “Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei,” Enzyme and Microbial Technology, vol. 34, no. 2, pp. 159–167, 2004. View at Publisher · View at Google Scholar
  24. P. Murray, N. Aro, C. Collins et al., “Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii,” Protein Expression and Purification, vol. 38, no. 2, pp. 248–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. P. Voutilainen, P. G. Murray, M. G. Tuohy, and A. Koivula, “Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity,” Protein Engineering, Design and Selection, vol. 23, no. 2, pp. 69–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Hong, H. Tamaki, K. Yamamoto, and H. Kumagai, “Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast,” Applied Microbiology and Biotechnology, vol. 63, no. 1, pp. 42–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Hong, H. Tamaki, K. Yamamoto, and H. Kumagai, “Cloning of a gene encoding a thermo-stable endo-β-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast,” Biotechnology Letters, vol. 25, no. 8, pp. 657–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Hong, H. Tamaki, and H. Kumagai, “Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus,” Applied Microbiology and Biotechnology, vol. 73, no. 6, pp. 1331–1339, 2007. View at Publisher · View at Google Scholar
  29. T. Jeoh, W. Michener, M. E. Himmel, S. R. Decker, and W. S. Adney, “Implications of cellobiohydrolase glycosylation for use in biomass conversion,” Biotechnol Biofuels, vol. 1, no. 10, 2008. View at Publisher · View at Google Scholar
  30. M. Meldgaard and I. Svendsen, “Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1, 3-1, 4)-β-glucanases secreted from yeast,” Microbiology, vol. 140, no. 1, pp. 159–166, 1994. View at Scopus
  31. D. Mamma, D. G. Hatzinikolaou, and P. Christakopoulos, “Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides,” Journal of Molecular Catalysis B, vol. 27, no. 4–6, pp. 183–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. P. Pack and Y. J. Yoo, “Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins,” Journal of Biotechnology, vol. 111, no. 3, pp. 269–277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Trivedi, H. S. Gehlot, and S. R. Rao, “Protein thermostability in Archaea and Eubacteria,” Genetics and Molecular Research, vol. 5, no. 4, pp. 816–827, 2006. View at Scopus
  34. T. J. Taylor and I. I. Vaisman, “Discrimination of thermophilic and mesophilic proteins,” BMC Structural Biology, vol. 10, supplement 1, article S5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. T. Beckham, Y. J. Bomble, J. F. Matthews et al., “The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein,” Biophysical Journal, vol. 99, no. 11, pp. 3773–3781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Hashimoto, “Recent structural studies of carbohydrate-binding modules,” Cellular and Molecular Life Sciences, vol. 63, no. 24, pp. 2954–2967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Shoseyov, Z. Shani, and I. Levy, “Carbohydrate binding modules: biochemical properties and novel applications,” Microbiology and Molecular Biology Reviews, vol. 70, no. 2, pp. 283–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. J. Dagel, Y. S. Liu, L. Zhong et al., “In situ imaging of single carbohydrate-binding modules on cellulose microfibrils,” Journal of Physical Chemistry B, vol. 115, no. 4, pp. 635–641, 2011. View at Publisher · View at Google Scholar
  39. A. Varrot, T. P. Frandsen, I. von Ossowski et al., “Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens,” Structure, vol. 11, no. 7, pp. 855–864, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. G. J. Davies, A. M. Brzozowski, M. Dauter, A. Varrot, and M. Schulein, “Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 Å resolution,” Biochemical Journal, vol. 348, no. 1, pp. 201–207, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. G. J. Davies, V. Ducros, R. J. Lewis, T. V. Borchert, and M. Schulein, “Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites,” Journal of Biotechnology, vol. 57, no. 1–3, pp. 91–100, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. L. F. Mackenzie, G. Sulzenbacher, C. Divne et al., “Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2 Å resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate,” Biochemical Journal, vol. 335, no. 2, pp. 409–416, 1998. View at Scopus
  43. G. J. Davies, G. G. Dodson, R. E. Hubbard et al., “Structure and function of endoglucanase V,” Nature, vol. 365, no. 6444, pp. 362–364, 1993. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Sandgren, G. I. Berglund, A. Shaw et al., “Crystal complex structures reveal how substrate is bound in the -4 to the +2 binding sites of Humicola grisea Cel12A,” Journal of Molecular Biology, vol. 342, no. 5, pp. 1505–1517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Lo Leggio and S. Larsen, “The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5,” FEBS Letters, vol. 523, no. 1–3, pp. 103–108, 2002. View at Scopus
  46. M. Hirvonen and A. C. Papageorgiou, “Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: mechanistic implications based on the free and cellobiose-bound forms,” Journal of Molecular Biology, vol. 329, no. 3, pp. 403–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Parkkinen, A. Koivula, J. Vehmaanpera, and J. Rouvinen, “Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding,” Protein Science, vol. 17, no. 8, pp. 1383–1394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Takashima, H. Iikura, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi, “Isolation of the gene and characterization of the enzymatic properties of a major exoglucanase of Humicola grisea without a cellulose-binding domain,” Journal of Biochemistry, vol. 124, no. 4, pp. 717–725, 1998. View at Scopus
  49. S. Takashima, M. Ohno, M. Hidaka, A. Nakamura, H. Masaki, and T. Uozumi, “Correlation between cellulose binding and activity of cellulose-binding domain mutants of Humicola grisea cellobiohydrolase 1,” FEBS Letters, vol. 581, no. 30, pp. 5891–5896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Potterton, S. McNicholas, E. Krissinel et al., “Developments in the CCP4 molecular-graphics project,” Acta Crystallographica Section D, vol. 60, no. 12 I, pp. 2288–2294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Sandgren, P. J. Gualfetti, C. Paech et al., “The Humicola grisea Cell2A enzyme structure at 1.2 Å resolution and the impact of its free cysteine residues on thermal stability,” Protein Science, vol. 12, no. 12, pp. 2782–2793, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Valjakka and J. Rouvinen, “Structure of 20K endoglucanase from Melanocarpus albomyces at 1.8 Å resolution,” Acta Crystallographica D, vol. 59, no. 4, pp. 765–768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. H. Percival Zhang, M. E. Himmel, and J. R. Mielenz, “Outlook for cellulase improvement: screening and selection strategies,” Biotechnology Advances, vol. 24, no. 5, pp. 452–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. N. E. Labrou, “Random mutagenesis methods for in vitro directed enzyme evolution,” Current Protein and Peptide Science, vol. 11, no. 1, pp. 91–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. P. Voutilainen, H. Boer, M. B. Linder et al., “Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability,” Enzyme and Microbial Technology, vol. 41, no. 3, pp. 234–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Sandgren, J. Stahlberg, and C. Mitchinson, “Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes,” Progress in Biophysics and Molecular Biology, vol. 89, no. 3, pp. 246–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. R. M. Yennamalli, A. J. Rader, J. D. Wolt, and T. Z. Sen, “Thermostability in endoglucanases is fold-specific,” BMC Structural Biology, vol. 11, Article ID 10, 2011. View at Publisher · View at Google Scholar
  58. D. E. Otzen, L. Christiansen, and M. Schulein, “A comparative study of the unfolding of the endoglucanase Ce145 from Humicola insolens in denaturant and surfactant,” Protein Science, vol. 8, no. 9, pp. 1878–1887, 1999. View at Scopus
  59. S. L. Mccarter, W. S. Adney, T. B. Vinzant et al., “Exploration of cellulose surface-binding properties of Acidothermus cellulolyticus Cel5A by site-specific mutagenesis,” Applied Biochemistry and Biotechnology A, vol. 98-100, pp. 273–287, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. S. Kim, H. C. Jung, and J. G. Pan, “Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants,” Applied and Environmental Microbiology, vol. 66, no. 2, pp. 788–793, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Ni, M. Takehara, and H. Watanabe, “Identification of activity related amino acid mutations of a GH9 termite cellulase,” Bioresource Technology, vol. 101, no. 16, pp. 6438–6443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. S. P. Voutilainen, H. Boer, M. Alapuranen, J. Janis, J. Vehmaanpera, and A. Koivula, “Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B,” Applied Microbiology and Biotechnology, vol. 83, no. 2, pp. 261–272, 2009. View at Publisher · View at Google Scholar
  63. M. C. Limon, E. Margolles-Clark, T. Benitez, and M. Penttila, “Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum,” FEMS Microbiology Letters, vol. 198, no. 1, pp. 57–63, 2001. View at Publisher · View at Google Scholar
  64. N. Szijarto, M. Siika-aho, M. Tenkanen et al., “Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces,” Journal of Biotechnology, vol. 136, no. 3-4, pp. 140–147, 2008. View at Publisher · View at Google Scholar
  65. F. A. Shaikh and S. G. Withers, “Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis,” Biochemistry and Cell Biology, vol. 86, no. 2, pp. 169–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Fort, V. Boyer, L. Greffe et al., “Highly efficient synthesis of β(1>4)-oligo- and -polysaccharides using a mutant cellulase,” Journal of the American Chemical Society, vol. 122, no. 23, pp. 5429–5437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Blanchard, S. Armand, P. Couthino et al., “Unexpected regioselectivity of Humicola insolens Cel7B glycosynthase mutants,” Carbohydrate Research, vol. 342, no. 5, pp. 710–716, 2007. View at Publisher · View at Google Scholar · View at Scopus