About this Journal Submit a Manuscript Table of Contents
Enzyme Research
Volume 2011 (2011), Article ID 398751, 8 pages
http://dx.doi.org/10.4061/2011/398751
Review Article

Determinants for Substrate Specificity of Protein Phosphatase 2A

Department of Pharmacology, University of Iowa, 2-432 BSB, Iowa City, IA 52242, USA

Received 4 March 2011; Accepted 28 April 2011

Academic Editor: Hemant Paudel

Copyright © 2011 Andrew M. Slupe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Hunter, “Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling,” Cell, vol. 80, no. 2, pp. 225–236, 1995. View at Scopus
  2. J. V. Olsen, B. Blagoev, F. Gnad et al., “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks,” Cell, vol. 127, no. 3, pp. 635–648, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Sakoff and A. McCluskey, “Protein phosphatase inhibition: structure based design. Towards new therapeutic agents,” Current Pharmaceutical Design, vol. 10, no. 10, pp. 1139–1159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. V. V. Vintonyak, A. P. Antonchick, D. Rauh, and H. Waldmann, “The therapeutic potential of phosphatase inhibitors,” Current Opinion in Chemical Biology, vol. 13, no. 3, pp. 272–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. McConnell and B. E. Wadzinski, “Targeting protein serine/threonine phosphatases for drug development,” Molecular Pharmacology, vol. 75, no. 6, pp. 1249–1261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. Lazo and P. Wipf, “Phosphatases as targets for cancer treatment,” Current Opinion in Investigational Drugs, vol. 10, no. 12, pp. 1297–1304, 2009. View at Scopus
  7. L. Martin, X. Latypova, and F. Terro, “Post-translational modifications of tau protein: implications for Alzheimer's disease,” Neurochemistry International, vol. 58, no. 4, pp. 458–471, 2011. View at Publisher · View at Google Scholar
  8. E. Kickstein, S. Krauss, P. Thornhill et al., “Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21830–21835, 2010. View at Publisher · View at Google Scholar
  9. J. Lu, J. S. Kovach, F. Johnson et al., “Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11697–11702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Rusnak and P. Mertz, “Calcineurin: form and function,” Physiological Reviews, vol. 80, no. 4, pp. 1483–1521, 2000. View at Scopus
  11. Y. Shi, “Serine/threonine phosphatases: mechanism through structure,” Cell, vol. 139, no. 3, pp. 468–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bollen, W. Peti, M. J. Ragusa, and M. Beullens, “The extended PP1 toolkit: designed to create specificity,” Trends in Biochemical Sciences, vol. 35, no. 8, pp. 450–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Roy and M. S. Cyert, “Cracking the phosphatase code: docking interactions determine substrate specificity,” Science Signaling, vol. 2, no. 100, p. re9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. J. A. Eichhorn, M. P. Creyghton, and R. Bernards, “Protein phosphatase 2A regulatory subunits and cancer,” Biochimica et Biophysica Acta, vol. 1795, no. 1, pp. 1–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Janssens and J. Goris, “Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling,” Biochemical Journal, vol. 353, no. 3, pp. 417–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Chenna, H. Sugawara, T. Koike et al., “Multiple sequence alignment with the Clustal series of programs,” Nucleic Acids Research, vol. 31, no. 13, pp. 3497–3500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. H. Huson, D. C. Richter, C. Rausch, T. Dezulian, M. Franz, and R. Rupp, “Dendroscope: an interactive viewer for large phylogenetic trees,” BMC Bioinformatics, vol. 8, Article ID 460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Virshup and S. Shenolikar, “From promiscuity to precision: protein phosphatases get a makeover,” Molecular Cell, vol. 33, no. 5, pp. 537–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Strack, J. A. Zaucha, F. F. Ebner, R. J. Colbran, and B. E. Wadzinski, “Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits,” Journal of Comparative Neurology, vol. 392, no. 4, pp. 515–527, 1998. View at Scopus
  20. C. P. Flegg, M. Sharma, C. Medina-Palazon et al., “Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56α: role of B56α in nuclear export of the catalytic subunit,” Journal of Biological Chemistry, vol. 285, no. 24, pp. 18144–18154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. McCright, A. M. Rivers, S. Audlin, and D. M. Virshup, “The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm,” Journal of Biological Chemistry, vol. 271, no. 36, pp. 22081–22089, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Bhasin, S. R. Cunha, M. Mudannayake, M. S. Gigena, T. B. Rogers, and P. J. Mohler, “Molecular basis for PP2A regulatory subunit B56α targeting in cardiomyocytes,” American Journal of Physiology, vol. 293, no. 1, pp. H109–H119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Gigena, A. Ito, H. Nojima, and T. B. Rogers, “A B56 regulatory subunit of protein phosphatase 2A localizes to nuclear speckles in cardiomyocytes,” American Journal of Physiology, vol. 289, no. 1, pp. H285–H294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Ito, T. R. Kataoka, M. Watanabe et al., “A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation,” EMBO Journal, vol. 19, no. 4, pp. 562–571, 2000. View at Scopus
  25. A. Ito, Y. I. Koma, M. Sohda et al., “Localization of the PP2A B56γ regulatory subunit at the Golgi complex: possible role in vesicle transport and migration,” American Journal of Pathology, vol. 162, no. 2, pp. 479–489, 2003. View at Scopus
  26. A. Ito, Y. I. Koma, K. Watabe et al., “A truncated isoform of the protein phosphatase 2A B56γ regulatory subunit may promote genetic instability and cause tumor progression,” American Journal of Pathology, vol. 162, no. 1, pp. 81–91, 2003. View at Scopus
  27. Y. I. Koma, A. Ito, K. Watabe, S. H. Kimura, and Y. Kitamura, “A truncated isoform of the PP2A B56γ regulatory subunit reduces irradiation-induced Mdm2 phosphorylation and could contribute to metastatic melanoma cell radioresistance,” Histology and Histopathology, vol. 19, no. 2, pp. 391–400, 2004. View at Scopus
  28. R. K. Dagda, J. A. Zaucha, B. E. Wadzinski, and S. Strack, “A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 24976–24985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Schmidt, S. Kins, A. Schild, R. M. Nitsch, B. A. Hemmings, and J. Götz, “Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A,” European Journal of Neuroscience, vol. 16, no. 11, pp. 2039–2048, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. K. Dagda, C. A. Barwacz, J. T. Cribbs, and S. Strack, “Unfolding-resistant translocase targeting: a novel mechanism for outer mitochondrial membrane localization exemplified by the Bβ2 regulatory subunit of protein phosphatase 2A,” Journal of Biological Chemistry, vol. 280, no. 29, pp. 27375–27382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. R. K. Dagda, R. A. Merrill, J. T. Cribbs et al., “The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bβ2 antagonizes neuronal survival by promoting mitochondrial fission,” Journal of Biological Chemistry, vol. 283, no. 52, pp. 36241–36248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Jin, J. Shi, A. Saraf et al., “The 48-kDa alternative translation isoform of PP2A:B56ε is required for Wnt signaling during midbrain-hindbrain boundary formation,” Journal of Biological Chemistry, vol. 284, no. 11, pp. 7190–7200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Zwaenepoel, J. Goris, C. Erneux, P. J. Parker, and V. Janssens, “Protein phosphatase 2A PR130/B″α1 subunit binds to the SH2 domain-containing inositol polyphosphate 5-phosphatase 2 and prevents epidermal growth factor (EGF)-induced EGF receptor degradation sustaining EGF-mediated signaling,” FASEB Journal, vol. 24, no. 2, pp. 538–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. S. Kitajima, S. A. Kawashima, and Y. Watanabe, “The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis,” Nature, vol. 427, no. 6974, pp. 510–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. W. Kerrebrock, D. P. Moore, J. S. Wu, and T. L. Orr-Weaver, “Mei-S332, a drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions,” Cell, vol. 83, no. 2, pp. 247–256, 1995. View at Scopus
  36. T. S. Kitajima, T. Sakuno, K. I. Ishiguro et al., “Shugoshin collaborates with protein phosphatase 2A to protect cohesin,” Nature, vol. 441, no. 1, pp. 46–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Clift, F. Bizzari, and A. L. Marston, “Shugoshin prevents eohesin cleavage by PP2A-dependent inhibition of separase,” Genes and Development, vol. 23, no. 6, pp. 766–790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Xu, B. Cetin, M. Anger et al., “Structure and function of the PP2A-shugoshin interaction,” Molecular Cell, vol. 35, no. 4, pp. 426–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Bryant, R. S. Westphal, and B. E. Wadzinski, “Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Bα subunit,” Biochemical Journal, vol. 339, no. 2, pp. 241–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Chung, A. C. Nairn, K. Murata, and D. L. Brautigan, “Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the α4 subunit which promotes dephosphorylation of elongation factor-2,” Biochemistry, vol. 38, no. 32, pp. 10371–10376, 1999. View at Publisher · View at Google Scholar
  41. E. Ogris, D. M. Gibson, and D. C. Pallas, “Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen,” Oncogene, vol. 15, no. 8, pp. 911–917, 1997. View at Scopus
  42. T. Tolstykh, J. Lee, S. Vafai, and J. B. Stock, “Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits,” EMBO Journal, vol. 19, no. 21, pp. 5682–5691, 2000. View at Scopus
  43. J. Wu, T. Tolstykh, J. Lee, K. Boyd, J. B. Stock, and J. R. Broach, “Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo,” EMBO Journal, vol. 19, no. 21, pp. 5672–5681, 2000. View at Scopus
  44. S. Longin, K. Zwaenepoel, J. V. Louis, S. Dilworth, J. Goris, and V. Janssens, “Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic subunit,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 26971–26980, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Nunbhakdi-Craig, S. Schuechner, J. M. Sontag et al., “Expression of protein phosphatase 2A mutants and silencing of the regulatory Bα subunit induce a selective loss of acetylated and detyrosinated microtubules,” Journal of Neurochemistry, vol. 101, no. 4, pp. 959–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Chen, B. L. Martin, and D. L. Brautigan, “Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation,” Science, vol. 257, no. 5074, pp. 1261–1264, 1992. View at Scopus
  47. I. De Baere, R. Derua, V. Janssens et al., “Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue,” Biochemistry, vol. 38, no. 50, pp. 16539–16547, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Leulliot, S. Quevillon-Cheruel, I. Sorel et al., “Structure of protein phosphatase methyltransferase 1 (PPM1), a leucine carboxyl methyltransferase involved in the regulation of protein phosphatase 2A activity,” Journal of Biological Chemistry, vol. 279, no. 9, pp. 8351–8358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Lee, Y. Chen, T. Tolstykh, and J. Stock, “A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 6043–6047, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Ogris, X. Du, K. C. Nelson et al., “A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A,” Journal of Biological Chemistry, vol. 274, no. 20, pp. 14382–14391, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Longin, J. Jordens, E. Martens et al., “An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator,” Biochemical Journal, vol. 380, no. 1, pp. 111–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Ortega-Gutiérrez, D. Leung, S. Ficarro, E. C. Peters, and B. F. Cravatt, “Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice,” PLoS ONE, vol. 3, no. 7, Article ID e2486, 2008. View at Publisher · View at Google Scholar
  53. G. Kranias, L. F. Watt, H. Carpenter et al., “Protein phosphatase 2A carboxymethylation and regulatory B subunits differentially regulate mast cell degranulation,” Cellular Signalling, vol. 22, no. 12, pp. 1882–1890, 2010. View at Publisher · View at Google Scholar
  54. X. X. Yu, X. Du, C. S. Moreno et al., “Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Bα regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen,” Molecular Biology of the Cell, vol. 12, no. 1, pp. 185–199, 2001. View at Scopus
  55. J. Wu, T. Tolstykh, J. Lee, K. Boyd, J. B. Stock, and J. R. Broach, “Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo,” EMBO Journal, vol. 19, no. 21, pp. 5672–5681, 2000. View at Scopus
  56. Y. Xu, Y. Chen, P. Zhang, P. D. Jeffrey, and Y. Shi, “Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation,” Molecular Cell, vol. 31, no. 6, pp. 873–885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Ikehara, S. Ikehara, S. Imamura, F. Shinjo, and T. Yasumoto, “Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B),” Biochemical and Biophysical Research Communications, vol. 354, no. 4, pp. 1052–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. U. S. Cho and W. Xu, “Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme,” Nature, vol. 445, no. 7123, pp. 53–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Xu, Y. Xing, Y. Chen et al., “Structure of the protein phosphatase 2A holoenzyme,” Cell, vol. 127, no. 6, pp. 1239–1251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Janssens, S. Longin, and J. Goris, “PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail),” Trends in Biochemical Sciences, vol. 33, no. 3, pp. 113–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. W. Liu, A. M. Silverstein, H. Shu, B. Martinez, and M. C. Mumby, “A functional genomics analysis of the B56 isoforms of Drosophila protein phosphatase 2A,” Molecular and Cellular Proteomics, vol. 6, no. 2, pp. 319–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Letourneux, G. Rocher, and F. Porteu, “B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK,” EMBO Journal, vol. 25, no. 4, pp. 727–738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. H. A. Schmitz, M. Held, V. Janssens et al., “Live-cell imaging RNAi screen identifies PP2A-B55α and importin-β 21 as key mitotic exit regulators in human cells,” Nature Cell Biology, vol. 12, no. 9, pp. 886–893, 2010. View at Publisher · View at Google Scholar
  64. J. H. Ahn, T. McAvoy, S. V. Rakhilin, A. Nishi, P. Greengard, and A. C. Nairn, “Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56δ subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2979–2984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. U. Y. Yu and J. H. Ahn, “Phosphorylation on the PPP2R5D B regulatory sub unit modulates the biochemical properties of protein phosphatase 2A,” BMB Reports, vol. 43, no. 4, pp. 263–267, 2010. View at Scopus
  66. H. S. Bateup, P. Svenningsson, M. Kuroiwa et al., “Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs,” Nature Neuroscience, vol. 11, no. 8, pp. 932–939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Neviani, R. Santhanam, R. Trotta et al., “The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein,” Cancer Cell, vol. 8, no. 5, pp. 355–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. R. Junttila, P. Puustinen, M. Niemelä et al., “CIP2A inhibits PP2A in human malignancies,” Cell, vol. 130, no. 1, pp. 51–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Mochida, S. L. Maslen, M. Skehel, and T. Hunt, “Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis,” Science, vol. 330, no. 6011, pp. 1670–1673, 2010. View at Publisher · View at Google Scholar
  70. A. Gharbi-Ayachi, J.-C. Labbé, A. Burgess et al., “The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A,” Science, vol. 330, no. 6011, pp. 1673–1677, 2010. View at Publisher · View at Google Scholar
  71. E. Voets and R. M. F. Wolthuis, “MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis,” Cell Cycle, vol. 9, no. 17, pp. 3591–3601, 2010. View at Publisher · View at Google Scholar
  72. S. Strack, R. Ruediger, G. Walter, R. K. Dagda, C. A. Barwacz, and J. Thomas Cribbs, “Protein phosphatase 2A holoenzyme assembly: identification of contacts between B-family regulatory and scaffolding a subunits,” Journal of Biological Chemistry, vol. 277, no. 23, pp. 20750–20755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. D. K. Wilson, D. Cerna, and E. Chew, “The 1.1-Å structure of the spindle checkpoint protein Bub3p reveals functional regions,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13944–13951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Saraf, E. A. Oberg, and S. Strack, “Molecular determinants for PP2A substrate specificity: charged residues mediate dephosphorylation of tyrosine hydroxylase by the PP2A/B′ regulatory subunit,” Biochemistry, vol. 49, no. 5, pp. 986–995, 2010. View at Publisher · View at Google Scholar · View at Scopus