About this Journal Submit a Manuscript Table of Contents
Epilepsy Research and Treatment
Volume 2013 (2013), Article ID 510529, 8 pages
http://dx.doi.org/10.1155/2013/510529
Review Article

Vitamin-Responsive Epileptic Encephalopathies in Children

1Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
2Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
3Texas Children’s Hospital, 6621 Fannin Street, CCC 1250.03, 12th Floor, Houston, TX 77030, USA

Received 29 March 2013; Accepted 18 June 2013

Academic Editor: Luigi Maria Specchio

Copyright © 2013 Satish Agadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Dulac, “Epileptic encephalopathy,” Epilepsia, vol. 42, no. 3, pp. 23–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. T. Berg, S. F. Berkovic, M. J. Brodie et al., “Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009,” Epilepsia, vol. 51, no. 4, pp. 676–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. D. Hunt Jr., J. Stokes Jr., W. W. McCrory, and H. H. Stroud, “Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine,” Pediatrics, vol. 13, no. 2, pp. 140–145, 1954. View at Scopus
  4. R. Garty, Z. Yonis, J. Braham, and K. Steinitz, “Pyridoxine-dependent convulsions in an infant,” Archives of disease in childhood, vol. 37, no. 191, pp. 21–24, 1962. View at Scopus
  5. M. Bejsovec, Z. Kulenda, and E. Ponca, “Familial intrauterine convulsions in pyridoxine dependency,” Archives of disease in childhood, vol. 42, no. 222, pp. 201–207, 1967. View at Scopus
  6. G. Battaglioli, D. R. Rosen, S. M. Gospe Jr., and D. L. Martin, “Glutamate decarboxylase is not genetically linked to pyridoxine- dependent seizures,” Neurology, vol. 55, no. 2, pp. 309–311, 2000. View at Scopus
  7. P. B. Mills, E. Struys, C. Jakobs et al., “Mutations in antiquitin in individuals with pyridoxine-dependent seizures,” Nature Medicine, vol. 12, no. 3, pp. 307–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-A. Haenggeli, E. Girardin, and L. Paunier, “Pyridoxine-dependent seizures, clinical and therapeutic aspects,” European Journal of Pediatrics, vol. 150, no. 7, pp. 452–455, 1991. View at Scopus
  9. P. Baxter, P. Griffiths, T. Kelly, and D. Gardner-Medwin, “Pyridoxine-dependent seizures: demographic, clinical MRI and psychometric features, and effect of dose on intelligence quotient,” Developmental Medicine and Child Neurology, vol. 38, no. 11, pp. 998–1006, 1996. View at Scopus
  10. P. Baxter, “Epidemiology of pyridoxine dependent and pyridoxine responsive seizures in the UK,” Archives of Disease in Childhood, vol. 81, no. 5, pp. 431–433, 1999. View at Scopus
  11. S. B. Coker, “Postneonatal vitamin B6-dependent epilepsy,” Pediatrics, vol. 90, no. 2, pp. 221–223, 1992. View at Scopus
  12. F. Goutières and J. Aicardi, “Atypical presentations of pyridoxine-dependent seizures: a treatable cause of intractable epilepsy in infants,” Annals of Neurology, vol. 17, no. 2, pp. 117–120, 1985. View at Scopus
  13. A. Bankier, M. Turner, and I. J. Hopkins, “Pyridoxine dependent seizures: a wider clinical spectrum,” Archives of Disease in Childhood, vol. 58, no. 6, pp. 415–418, 1983. View at Scopus
  14. B. Plecko, C. Hikel, G.-C. Korenke et al., “Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy,” Neuropediatrics, vol. 36, no. 3, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Plecko, K. Paul, E. Paschke et al., “Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene,” Human Mutation, vol. 28, no. 1, pp. 19–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. M. Gospe Jr. and S. T. Hecht, “Longitudinal MRI findings in pyridoxine-dependent seizures,” Neurology, vol. 51, no. 1, pp. 74–78, 1998. View at Scopus
  17. P. B. Mills, E. J. Footitt, K. A. Mills et al., “Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency),” Brain, vol. 133, no. 7, pp. 2148–2159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. Shih, H. Kornblum, and D. A. Shewmon, “Global brain dysfunction in an infant with pyridoxine dependency: evaluation with EEG, evoked potentials, MRI, and PET,” Neurology, vol. 47, no. 3, pp. 824–826, 1996. View at Scopus
  19. H. Ulvi, B. Müngen, C. Yakinci, and T. Yoldaş, “Pyridoxine-dependent seizures: long-term follow-up of two cases with clinical and MRI findings, and pyridoxine treatment,” Journal of Tropical Pediatrics, vol. 48, no. 5, pp. 303–306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Alkan, R. Kutlu, M. Aslan, A. Sigirci, I. Orkan, and C. Yakinci, “Pyridoxine-dependent seizures: magnetic resonance spectroscopy findings,” Journal of Child Neurology, vol. 19, no. 1, pp. 75–78, 2004. View at Scopus
  21. S. M. Gospe Jr., “Pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency: unique clinical symptoms and non-specific EEG characteristics,” Developmental Medicine and Child Neurology, vol. 52, no. 7, pp. 602–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Schmitt, M. Baumgartner, P. B. Mills et al., “Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency,” Developmental Medicine and Child Neurology, vol. 52, no. 7, pp. e133–e142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Kluger, R. Blank, K. Paul et al., “Pyridoxine-dependent epilepsy: normal outcome in a patient with late diagnosis after prolonged status epilepticus causing cortical blindness,” Neuropediatrics, vol. 39, no. 5, pp. 276–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. L. Bennett, Y. Chen, S. Hahn, I. A. Glass, and S. M. Gospe Jr., “Prevalence of ALDH7A1 mutations in 18 North American pyridoxine-dependent seizure (PDS) patients,” Epilepsia, vol. 50, no. 5, pp. 1167–1175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Kanno, S. Kure, A. Narisawa et al., “Allelic and non-allelic heterogeneities in pyridoxine dependent seizures revealed by ALDH7A1 mutational analysis,” Molecular Genetics and Metabolism, vol. 91, no. 4, pp. 384–389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. G. S. Salomons, L. A. Bok, E. A. Struys et al., “An intriguing “silent” mutation and a founder effect in antiquitin (ALDH7A1),” Annals of Neurology, vol. 62, no. 4, pp. 414–418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. Rankin, S. Harrison, W. K. Chong, S. Boyd, and S. E. Aylett, “Pyridoxine-dependent seizures: a family phenotype that leads to severe cognitive deficits, regardless of treatment regime,” Developmental Medicine and Child Neurology, vol. 49, no. 4, pp. 300–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. A. Mikati, E. Trevathan, K. Krishnamoorthy, and C. T. Lombroso, “Pyridoxine-dependent epilepsy: EEG investigations and long-term follow-up,” Electroencephalography and Clinical Neurophysiology, vol. 78, no. 3, pp. 215–221, 1991. View at Scopus
  29. S. M. Gospe Jr., “Neonatal vitamin-responsive epileptic encephalopathies,” Chang Gung Medical Journal, vol. 33, no. 1, pp. 1–12, 2010. View at Scopus
  30. L. A. Bok, N. M. Maurits, M. A. Willemsen et al., “The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy,” Epilepsia, vol. 51, no. 12, pp. 2406–2411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H.-J. Gdynia, T. Müller, A.-D. Sperfeld et al., “Severe sensorimotor neuropathy after intake of highest dosages of vitamin B6,” Neuromuscular Disorders, vol. 18, no. 2, pp. 156–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Schaumburg, J. Kaplan, and A. Windebank, “Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome,” The New England Journal of Medicine, vol. 309, no. 8, pp. 445–448, 1983. View at Scopus
  33. C. D. van Karnebeek, H. Hartmann, S. Jaggumantri et al., “Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials,” Molecular Genetics and Metabolism, vol. 107, no. 3, pp. 335–344, 2012.
  34. K. Baynes, S. T. Farias, and S. M. Gospe Jr., “Pyridoxine-dependent seizures and cognition in adulthood,” Developmental Medicine and Child Neurology, vol. 45, no. 11, pp. 782–785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Ohtsuka, J. Hattori, T. Ishida, T. Ogino, and E. Oka, “Long-term follow-up of an individual with vitamin B6-dependent seizures,” Developmental Medicine & Child Neurology, vol. 41, no. 3, pp. 203–206, 1999.
  36. L. A. Bok, F. J. Halbertsma, S. Houterman et al., “Long-term outcome in pyridoxine-dependent epilepsy,” Developmental Medicine & Child Neurology, vol. 54, no. 9, pp. 849–854, 2012.
  37. S. Stockler, B. Plecko, S. M. Gospe et al., “Pyridoxine dependent epilepsy and antiquitin deficiency. Clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up,” Molecular Genetics and Metabolism, vol. 104, no. 1-2, pp. 48–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M.-F. Kuo and H.-S. Wang, “Pyridoxal phosphate-responsive epilepsy with resistance to pyridoxine,” Pediatric Neurology, vol. 26, no. 2, pp. 146–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. P. B. Mills, R. A. H. Surtees, M. P. Champion et al., “Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase,” Human Molecular Genetics, vol. 14, no. 8, pp. 1077–1086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. G. F. Hoffmann, B. Schmitt, M. Windfuhr et al., “Pyridoxal 5′-phosphate may be curative in early-onset epileptic encephalopathy,” Journal of Inherited Metabolic Disease, vol. 30, no. 1, pp. 96–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Bagci, J. Zschocke, G. F. Hoffmann et al., “Pyridoxal phosphate-dependent neonatal epileptic encephalopathy,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 93, no. 2, pp. F151–F152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Ruiz, J. García-Villoria, A. Ormazabal et al., “A new fatal case of pyridox(am)ine 5′-phosphate oxidase (PNPO) deficiency,” Molecular Genetics and Metabolism, vol. 93, no. 2, pp. 216–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Ormazabal, M. Oppenheim, M. Serrano et al., “Pyridoxal 5′-phosphate values in cerebrospinal fluid: reference values and diagnosis of PNPO deficiency in paediatric patients,” Molecular Genetics and Metabolism, vol. 94, no. 2, pp. 173–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. J. Footitt, S. J. Heales, P. B. Mills, G. F. G. Allen, M. Oppenheim, and P. T. Clayton, “Pyridoxal 5′-phosphate in cerebrospinal fluid; Factors affecting concentration,” Journal of Inherited Metabolic Disease, vol. 34, no. 2, pp. 529–538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. A. Wevers, S. I. Hansen, J. L. M. van Hellenberg Hubar, J. Holm, M. Hoier-Madsen, and P. J. H. Jongen, “Folate deficiency in cerebrospinal fluid associated with a defect in folate binding protein in the central nervous system,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 2, pp. 223–226, 1994. View at Scopus
  46. V. T. Ramaekers and N. Blau, “Cerebral folate deficiency,” Developmental Medicine and Child Neurology, vol. 46, no. 12, pp. 843–851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. V. T. Ramaekers, S. P. Rothenberg, J. M. Sequeira et al., “Autoantibodies to folate receptors in the cerebral folate deficiency syndrome,” The New England Journal of Medicine, vol. 352, no. 19, pp. 1985–1991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. U. Steele, S. M. Cheah, A. Veerapandiyan, W. Gallentine, E. C. Smith, and M. A. Mikati, “Electroencephalographic and seizure manifestations in two patients with folate receptor autoimmune antibody-mediated primary cerebral folate deficiency,” Epilepsy & Behavior, vol. 24, no. 4, pp. 507–512, 2012.
  49. M. Grapp, I. A. Just, T. Linnankivi et al., “Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency,” Brain, vol. 135, no. 7, pp. 2022–2031, 2012.
  50. F. Scaglia, “Cerebral Folate Deficiency and Epilepsy,” in Inherited Metabolic Epilepsies, pp. 261–266, Demos Publication, 2012.
  51. K. Hyland, J. Shoffner, and S. J. Heales, “Cerebral folate deficiency,” Journal of Inherited Metabolic Disease, vol. 33, no. 5, pp. 563–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Wolf, “Worldwide survey of neonatal screening for biotinidase deficiency,” Journal of Inherited Metabolic Disease, vol. 14, no. 6, pp. 923–927, 1991. View at Scopus
  53. B. Afroze and M. Wasay, “Biotinidase deficiency in Pakistani children; what needs to be known and done,” Journal of the Pakistan Medical Association, vol. 62, no. 4, pp. 312–313, 2012. View at Scopus
  54. B. Wolf, G. S. Heard, and K. A. Weissbecker, “Biotinidase deficiency: initial clinical features and rapid diagnosis,” Annals of Neurology, vol. 18, no. 5, pp. 614–617, 1985. View at Scopus
  55. B. Wolf, R. Pomponio, K. Norrgard et al., “Delayed-onset profound biotnidase deficiency,” Journal of Pediatrics, vol. 132, no. 2, pp. 362–365, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. B. A. Salbert, J. M. Pellock, and B. Wolf, “Characterization of seizures associated with biotinidase deficiency,” Neurology, vol. 43, no. 7, pp. 1351–1355, 1993. View at Scopus
  57. B. Wolf, “The neurology of biotinidase deficiency,” Molecular Genetics and Metabolism, vol. 104, no. 1-2, pp. 27–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. P. C. Navarro, A. Guerra, J. G. Alvarez, and F. J. Ortiz, “Cutaneous and neurologic manifestations of biotinidase deficiency,” International Journal of Dermatology, vol. 39, no. 5, pp. 363–365, 2000. View at Scopus
  59. S. N. Joshi, M. Fathalla, R. Koul, M. Al. Maney, and R. Bayoumi, “Biotin responsive seizures and encephalopathy due to biotinidase deficiency,” Neurology India, vol. 58, no. 2, pp. 323–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Desai, K. Ganesan, and A. Hegde, “Biotinidase deficiency: a reversible metabolic encephalopathy. Neuroimaging and MR spectroscopic findings in a series of four patients,” Pediatric Radiology, vol. 38, no. 8, pp. 848–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. D. M. Mock, “Skin manifestations of biotin deficiency,” Seminars in Dermatology, vol. 10, no. 4, pp. 296–302, 1991. View at Scopus
  62. B. Wolf, “Biotinidase deficiency: ‘if you have to have an inherited metabolic disease, this is the one to have’,” Genetics in Medicin, vol. 14, no. 6, pp. 565–575, 2012.
  63. B. Wolf and G. S. Heard, “Biotinidase deficiency,” Advances in pediatrics, vol. 38, pp. 1–21, 1991. View at Scopus
  64. B. Tabark, S. Al-Shafi, S. Al-Shahwan, et al., “Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings,” Neurology, vol. 80, no. 3, pp. 261–267, 2013. View at Publisher · View at Google Scholar
  65. B. Wolf, “Clinical issues and frequent questions about biotinidase deficiency,” Molecular Genetics and Metabolism, vol. 100, no. 1, pp. 6–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Wolf and G. S. Heard, “Screening for biotinidase deficiency in newborns: Worldwide experience,” Pediatrics, vol. 85, no. 4, pp. 512–517, 1990. View at Scopus
  67. B. Wolf, R. Spencer, and T. Gleason, “Hearing loss is a common feature of symptomatic children with profound biotinidase deficiency,” Journal of Pediatrics, vol. 140, no. 2, pp. 242–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Grünewald, M. P. Champion, J. V. Leonard, J. Schaper, and A. A. M. Morris, “Biotinidase deficiency: a treatable leukoencephalopathy,” Neuropediatrics, vol. 35, no. 4, pp. 211–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. O. Leichtenstern, “Progressive perniciöse anämie bei tabeskranken,” Deutsche Medizinische Wochenschrift, vol. 10, pp. 849–850, 1884.
  70. L. Lichtheim, “Zur kenntniss der perniciösen anämie,” Munchener Medizinische Wochenschrift, vol. 34, pp. 301–306, 1887.
  71. M. Jadhav, J. K. G. Webb, S. Vaishnava, and S. J. Baker, “Vitamin-B12 deficiency in Indian infants,” The Lancet, vol. 280, no. 7262, pp. 903–907, 1962. View at Scopus
  72. U. von Schenck, C. Bender-Götze, and B. Koletzko, “Persistence of neurological damage induced by dietary vitamin B-12 deficiency in infancy,” Archives of Disease in Childhood, vol. 77, no. 2, pp. 137–139, 1997. View at Scopus
  73. J. R. Russell, F. Batten, and J. Collier, “Subacute combined degeneration of the spinal cord,” Brain, vol. 23, no. 1, pp. 39–110, 1900. View at Publisher · View at Google Scholar
  74. S. D. Shorvon, M. W. P. Carney, I. Chanarin, and E. H. Reynolds, “The neuropsychiatry of megaloblastic anaemia,” British Medical Journal, vol. 281, no. 6247, pp. 1036–1038, 1980. View at Scopus
  75. E. Reynolds, “Vitamin B12, folic acid, and the nervous system,” The Lancet Neurology, vol. 5, no. 11, pp. 949–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. S. A. Rasmussen, P. M. Fernhoff, and K. S. Scanlon, “Vitamin B12 deficiency in children and adolescents,” Journal of Pediatrics, vol. 138, no. 1, pp. 10–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. S. M. Graham, O. M. Arvela, and G. A. Wise, “Long-term neurologic consequences of nutritional vitamin B12 deficiency in infants,” Journal of Pediatrics, vol. 121, no. 5, pp. 710–714, 1992. View at Publisher · View at Google Scholar · View at Scopus
  78. G. C. Korenke, D. H. Hunneman, S. Eber, and F. Hanefeld, “Severe encephalopathy with epilepsy in an infant caused by subclinical maternal pernicious anaemia: case report and review of the literature,” European Journal of Pediatrics, vol. 163, no. 4-5, pp. 196–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. K.-O. Lövblad, G. Ramelli, L. Remonda, A. C. Nirkko, C. Ozdoba, and G. Schroth, “Retardation of myelination due to dietary vitamin B12 deficiency: cranial MRI findings,” Pediatric Radiology, vol. 27, no. 2, pp. 155–158, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. P. T. Monagle and G. P. Tauro, “Infantile megaloblastosis secondary to maternal vitamin B12 deficiency,” Clinical and Laboratory Haematology, vol. 19, no. 1, pp. 23–25, 1997. View at Scopus
  81. G.-A. Gutiérrez-Aguilar, P. Abenia-Usón, A. García-Cazorla, M. A. Vilaseca, and J. Campistol, “Encephalopathy with methylmalonic aciduria and homocystinuria secondary to a deficient exogenous supply of vitamin B12,” Revista de Neurologia, vol. 40, no. 10, pp. 605–608, 2005. View at Scopus
  82. J. Lundgren and G. Blennow, “Vitamin B12 deficiency may cause benign familial infantile convulsions: a case report,” Acta Paediatrica, vol. 88, no. 10, pp. 1158–1160, 1999. View at Scopus
  83. I. Erol, F. Alehan, and A. Gümüs, “West syndrome in an infant with vitamin B12 deficiency in the absence of macrocytic anaemia,” Developmental Medicine and Child Neurology, vol. 49, no. 10, pp. 774–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Lee, H.-S. Chang, H.-T. Wu, H.-H. Weng, and C.-M. Chen, “Intractable epilepsy as the presentation of vitamin B12 deficiency in the absence of macrocytic anemia,” Epilepsia, vol. 46, no. 7, pp. 1147–1148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Kumar, “Recurrent seizures: an unusual manifestation of vitamin B12 deficiency,” Neurology India, vol. 52, no. 1, pp. 122–123, 2004. View at Scopus
  86. E. P. Frenkel, “Abnormal fatty acid metabolism in peripheral nerves of patients with pernicious anemia,” Journal of Clinical Investigation, vol. 52, no. 5, pp. 1237–1245, 1973. View at Scopus
  87. A. L. Bjørke Monsen and P. M. Ueland, “Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescence,” American Journal of Clinical Nutrition, vol. 78, no. 1, pp. 7–21, 2003. View at Scopus
  88. R. H. Allen, S. P. Stabler, D. G. Savage, and J. Lindenbaum, “Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency,” The FASEB Journal, vol. 7, no. 14, pp. 1344–1353, 1993. View at Scopus
  89. K. Stollhoff and F. J. Schulte, “Vitamin B12 and brain development,” European Journal of Pediatrics, vol. 146, no. 2, pp. 201–205, 1987. View at Scopus
  90. L. J. Wolansky, G. Goldstein, A. Gozo, H. J. Lee, L. Sills, and S. Chatkupt, “Subacute combined degeneration of the spinal cord: MRI detection of preferential involvement of the posterior columns in a child,” Pediatric Radiology, vol. 25, no. 2, pp. 140–141, 1995. View at Scopus
  91. E. B. Healton, D. G. Savage, J. C. M. Brust, T. J. Garrett, and J. Lindenbaum, “Neurologic aspects of cobalamin deficiency,” Medicine, vol. 70, no. 4, pp. 229–245, 1991. View at Scopus