About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 125890, 8 pages
http://dx.doi.org/10.1155/2012/125890
Research Article

Urine Metabolite Profiling of Human Colorectal Cancer by Capillary Electrophoresis Mass Spectrometry Based on MRB

1Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
2Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
3Medical College, Soochow University, Suzhou Jiangsu, 215213, China
4Cyclization College, Nanchang Aeronautical University, Jiangxi, Nanchang 330063, China

Received 20 April 2012; Accepted 12 June 2012

Academic Editor: Richard Ricachenevski Gurski

Copyright © 2012 Jin-Lian Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Y. Chan, P. K. Koh, M. Mal et al., “Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS),” Journal of Proteome Research, vol. 8, no. 1, pp. 352–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. P. Qiu, G. X. Cai, M. M. Su et al., “Urinary metabonomic study on colorectal cancer,” Journal of Proteome Research, vol. 9, no. 3, pp. 1627–1634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ikedaa, S. Nishiumi, M. Shinoharab et al., “Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer,” Biomedical Chromatography, vol. 26, no. 5, pp. 548–558, 2012.
  5. L. Rajdev, “Treatment options for surgically resectable gastric cancer,” Current Treatment Options in Oncology, vol. 11, no. 1-2, pp. 14–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Sung, J. Y. Lau, K. L. Goh, W. K. Leung, and Asia Pacific Working Group on Colorectal Cancer, “Increasing incidence of colorectal cancer in Asia: implications for screening,” Lancet Oncology, vol. 6, no. 11, pp. 871–876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Winawer, A. G. Zauber, H. May Nah et al., “Prevention of colorectal cancer by colonoscopic polypectomy,” The New England Journal of Medicine, vol. 329, no. 27, pp. 1977–1981, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wu, R. Y. Xue, Z. Q. Tang et al., “Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 396, no. 4, pp. 1385–1395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. Hu, H. Q. Tang, Q. Zhang et al., “Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS,” World Journal of Gastroenterology, vol. 17, no. 6, pp. 727–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. H. Fletcher, “Carcinoembryonic antigen,” Annals of Internal Medicine, vol. 104, no. 1, pp. 66–73, 1986. View at Scopus
  11. O. Kronborg, C. Fenger, J. Olsen, O. D. Jørgensen, and O. Søndergaard, “Randomised study of screening for colorectal cancer with faecal-occult-blood test,” The Lancet, vol. 348, no. 9040, pp. 1467–1471, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Nevedomskaya, R. Ramautar, R. Derks et al., “CE-MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice,” Journal of Proteome Research, vol. 9, no. 9, pp. 4869–4874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Madsen, T. Lundstedt, and J. Trygg, “Chemometrics in metabolomics—a review in human disease diagnosis,” Analytica Chimica Acta, vol. 659, no. 1-2, pp. 23–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Vinayavekhin, E. A. Homan, and A. Saghatelian, “Exploring disease through metabolomics,” ACS Chemical Biology, vol. 5, no. 1, pp. 91–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Lenz and I. D. Wilson, “Analytical strategies in metabonomics,” Journal of Proteome Research, vol. 6, no. 2, pp. 443–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Williams, C. J. Cameron, R. Workman, C. D. Broeckling, L. W. Sumner, and J. T. Smith, “Amino acid profiling in plant cell cultures: an inter-laboratory comparison of CE-MS and GC-MS,” Electrophoresis, vol. 28, no. 9, pp. 1371–1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Shama, S. W. Bai, B. C. Chung, and B. H. Jung, “Quantitative analysis of 17 amino acids in the connective tissue of patients with pelvic organ prolapse using capillary electrophoresis-tandem mass spectrometry,” Journal of Chromatography B, vol. 865, no. 1-2, pp. 18–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Zhu, W. Zhang, L. Y. Fan et al., “Study on mechanism of stacking of zwitterion in highly saline biologic sample by transient moving reaction boundary created by formic buffer and conjugate base in capillary electrophoresis,” Talanta, vol. 78, no. 3, pp. 1194–1200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Benavente, R. van der Heijden, U. R. Tjaden, J. van der Greef, and T. Hankemeier, “Metabolite profiling of human urine by CE-ESI-MS using separation electrolytes at low PH,” Electrophoresis, vol. 27, no. 22, pp. 4570–4584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Mal, P. K. Koh, P. Y. Cheah, and E. C. Chan, “Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 403, no. 2, pp. 483–493, 2012.
  21. T. Morikawa, J. Kato, Y. Yamaji et al., “Sensitivity of immunochemical fecal occult blood test to small colorectal adenomas,” American Journal of Gastroenterology, vol. 102, no. 10, pp. 2259–2264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Nozoe, T. Iguchi, A. Egashira, E. Adachi, A. Matsukuma, and T. Ezaki, “Pathological prognostic score as a simple criterion to predict outcome in gastric carcinoma,” Journal of Surgical Oncology, vol. 102, no. 1, pp. 73–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Wang, W. Zhang, L. Y. Fan et al., “Sensitive quantitative determination of oxymatrine and matrine in rat plasma by capillary electrophoresis with stacking induced by moving reaction boundary,” Analytica Chimica Acta, vol. 594, no. 2, pp. 290–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. Lin and T. Kaneta, “On-line sample concentration techniques in capillary electrophoresis: velocity gradient techniques and sample concentration techniques for biomolecules,” Electrophoresis, vol. 25, no. 23-24, pp. 4058–4073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. P. Qiu, G. X. Cai, M. M. Su et al., “Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS,” Journal of Proteome Research, vol. 8, no. 10, pp. 4844–4850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Langbein, W. M. Frederiks, A. zur Hausen et al., “Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer,” International Journal of Cancer, vol. 122, no. 11, pp. 2422–2428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. Brizel, T. Schroeder, R. L. Scher et al., “Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 51, no. 2, pp. 349–353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Chen, H. Q. Tang, J. D. Hu, J. Fan, J. Hong, and J. Z. Gu, “Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry,” World Journal of Gastroenterology, vol. 16, no. 46, pp. 5874–5880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Yamanaka, T. Kanemaki, M. Tsuji et al., “Branched-chain amino acid-supplemented nutritional support after gastrectomy for gastric cancer with special reference to plasma amino acid profiles,” Nutrition, vol. 6, no. 3, pp. 241–245, 1990. View at Scopus
  30. R. Xue, L. Dong, H. Wu, T. Liu, J. Wang, and X. Shen, “Gas chromatography/mass spectrometry screening of serum metabolomic biomarkers in hepatitis B virus infected cirrhosis patients,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 3, pp. 305–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Chen, J. Fan, H. Q. Tang, J. D. Hu, and J. Z. Gu, “Urinary metabolomic analysis of human gastric cancer mouse models and patients using gas chromatography/mass spectrometry,” Journal of Molecular Biomarkers & Diagnosis. In press.
  32. Y. Miyagi, M. Higashiyama, A. Gochi, et al., “Plasma free amino acid profiling of five types of cancer patients and its application for early detection,” PLoS ONE, vol. 6, no. 9, Article ID e24143, 2011.
  33. Q. Ma, M. Hoper, N. Anderson, and B. J. Rowlands, “Effect of supplemental L-arginine in a chemical-induced model of colorectal cancer,” World Journal of Surgery, vol. 20, no. 8, pp. 1087–1091, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Ma, Y. Wang, X. Gao, Z. Ma, and Z. Song, “L-arginine reduces cell proliferation and ornithine decarboxylase activity in patients with colorectal adenoma and adenocarcinoma,” Clinical Cancer Research, vol. 13, no. 24, pp. 7407–7412, 2007. View at Publisher · View at Google Scholar · View at Scopus