About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 247309, 10 pages
http://dx.doi.org/10.1155/2012/247309
Research Article

Differentiating Branch Duct and Mixed IPMN in Endoscopically Collected Pancreatic Cyst Fluid via Cytokine Analysis

1Center for Pancreatic Disease and Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
2Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
3Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
4Department of Pathology, Boston’s Children Hospital, Boston, MA 02115, USA
5Proteomics Center, Boston’s Children Hospital, Boston, MA 02115, USA

Received 1 October 2012; Revised 31 October 2012; Accepted 14 November 2012

Academic Editor: Massimo Raimondo

Copyright © 2012 Linda S. Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. S. Lee, J. R. Saltzman, B. C. Bounds, J. M. Poneros, W. R. Brugge, and C. C. Thompson, “EUS-guided fine needle aspiration of pancreatic cysts: a retrospective analysis of complications and their predictors,” Clinical Gastroenterology and Hepatology, vol. 3, no. 3, pp. 231–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Al Haddad, P. B. Laursen, D. Chollet, S. Ahmaidi, and M. Buchheit, “Reliability of resting and postexercise heart rate measures,” International Journal of Sports Medicine, vol. 32, no. 8, pp. 598–605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. V. Maker, L. S. Lee, C. P. Raut, T. E. Clancy, and R. S. Swanson, “Cytology from pancreatic cysts has marginal utility in surgical decision-making,” Annals of Surgical Oncology, vol. 15, no. 11, pp. 3187–3192, 2008. View at Publisher · View at Google Scholar
  4. J. G. Cannon, “Inflammatory cytokines in nonpathological states,” News in Physiological Sciences, vol. 15, no. 6, pp. 298–303, 2000. View at Scopus
  5. E. J. Fernandez and E. Lolis, “Structure, function, and inhibition of chemokines,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 469–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. B. Rottman, “Key role of chemokines and chemokine receptors in inflammation, immunity, neoplasia, and infectious disease,” Veterinary Pathology, vol. 36, no. 5, pp. 357–367, 1999. View at Scopus
  7. S. P. FitzGerald, R. I. McConnell, and A. Huxley, “Simultaneous analysis of circulating human cytokines using a high-sensitivity cytokine biochip array,” Journal of Proteome Research, vol. 7, no. 1, pp. 450–455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Paulo, L. S. Lee, B. Wu, P. A. Banks, H. Steen, and D. L. Conwell, “Cytokine profiling of pancreatic fluid using the ePFT collection method in tandem with a multiplexed microarray assay,” Journal of Immunological Methods, vol. 369, no. 1-2, pp. 98–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. V. Sahani, N. I. Sainani, M. A. Blake, S. Crippa, M. Mino-Kenudson, and C. Fernandez Del-Castillo, “Prospective evaluation of reader performance on MDCT in characterization of cystic pancreatic lesions and prediction of cyst biologic aggressiveness,” American Journal of Roentgenology, vol. 197, no. 1, pp. W53–W61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kubo, Y. Chijiiwa, K. Akahoshi et al., “Intraductal papillary-mucinous tumors of the pancreas: differential diagnosis between benign and malignant tumors by endoscopic ultrasonography,” American Journal of Gastroenterology, vol. 96, no. 5, pp. 1429–1434, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. H. Hruban, K. Takaori, D. S. Klimstra et al., “An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms,” American Journal of Surgical Pathology, vol. 28, no. 8, pp. 977–987, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. M. Reid-Lombardo, J. St Sauver, Z. Li, W. A. Ahrens, K. K. Unni, and F. G. Que, “Incidence, prevalence, and management of intraductal papillary mucinous neoplasm in Olmsted County, Minnesota, 1984–2005: a Population Study,” Pancreas, vol. 37, no. 2, pp. 139–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Paulo, L. S. Lee, B. Wu et al., “Proteomic analysis of endoscopically (endoscopic pancreatic function test) collected gastroduodenal fluid using in-gel tryptic digestion followed by LC-MS/MS,” Proteomics-Clinical Applications, vol. 4, no. 8-9, pp. 715–725, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Paulo, L. S. Lee, B. Wu et al., “Optimized sample preparation of endoscopic collected pancreatic fluid for SDS-PAGE analysis,” Electrophoresis, vol. 31, no. 14, pp. 2377–2387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Paulo, L. S. Lee, B. Wu et al., “Identification of pancreas-specific proteins in endoscopically (endoscopic pancreatic function test) collected pancreatic fluid with liquid chromatography-tandem mass spectrometry,” Pancreas, vol. 39, no. 6, pp. 889–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Paulo, V. Kadiyala, L. S. Lee, P. A. Banks, D. L. Conwell, and H. Steen, “Proteomic analysis (gelc-ms/ms) of epft-collected pancreatic fluid in chronic pancreatitis,” Journal of Proteome Research, vol. 11, no. 3, pp. 1897–1912, 2012. View at Publisher · View at Google Scholar
  17. D. Opalka, C. E. Lachman, S. A. MacMullen et al., “Simultaneous quantitation of antibodies to neutralizing epitopes on virus-like particles for human papillomavirus types 6, 11, 16, and 18 by a multiplexed luminex assay,” Clinical and Diagnostic Laboratory Immunology, vol. 10, no. 1, pp. 108–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. R. T. Carson and D. A. A. Vignali, “Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay,” Journal of Immunological Methods, vol. 227, no. 1-2, pp. 41–52, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Sachdeva and D. Asthana, “Cytokine quantitation: technologies and applications,” Frontiers in Bioscience, vol. 12, no. 12, pp. 4682–4695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. A. Vignali, “Multiplexed particle-based flow cytometric assays,” Journal of Immunological Methods, vol. 243, no. 1-2, pp. 243–255, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Bender and S. Lange, “Adjusting for multiple testing—when and how?” Journal of Clinical Epidemiology, vol. 54, no. 4, pp. 343–349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Tanaka, S. Chari, V. Adsay et al., “International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas,” Pancreatology, vol. 6, no. 1-2, pp. 17–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Tanaka, C. Fernandez-del Castillo, V. Adsay, et al., “International consensus guidelines 2012 for the management of ipmn and mcn of the pancreas,” Pancreatology, vol. 12, no. 3, pp. 183–197, 2012.
  24. I. Pedrosa and D. Boparai, “Imaging considerations in intraductal papillary mucinous neoplasms of the pancreas,” World Journal of Gastrointestinal Surgery, vol. 2, no. 10, pp. 324–330, 2010. View at Publisher · View at Google Scholar
  25. K. Shimizu, “Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis,” Journal of Gastroenterology, vol. 43, no. 11, pp. 823–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Patel and D. R. Fine, “Fibrogenesis in the pancreas after acinar cell injury,” Scandinavian Journal of Surgery, vol. 94, no. 2, pp. 108–111, 2005. View at Scopus
  27. V. Ellenrieder, W. Schneiderhan, M. Bachem, and G. Adler, “Fibrogenesis in the pancreas,” Roczniki Akademii Medycznej w Bialymstoku, vol. 49, pp. 40–46, 2004. View at Scopus
  28. M. V. Apte and J. S. Wilson, “Mechanisms of pancreatic fibrosis,” Digestive Diseases, vol. 22, no. 3, pp. 273–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Masamune, K. Kikuta, T. Watanabe et al., “Fibrinogen induces cytokine and collagen production in pancreatic stellate cells,” Gut, vol. 58, no. 4, pp. 550–559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Farrow, D. Albo, and D. H. Berger, “The role of the tumor microenvironment in the progression of pancreatic cancer,” Journal of Surgical Research, vol. 149, no. 2, pp. 319–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Aust, W. Jäger, H. Kirschner, M. Klimpfinger, and T. Thalhammer, “Pancreatic stellate/myofibroblast cells express G-protein-coupled melatonin receptor 1,” Wiener Medizinische Wochenschrift, vol. 158, no. 19-20, pp. 575–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Vonlaufen, M. V. Apte, B. A. Imhof, and J. L. Frossard, “The role of inflammatory and parenchymal cells in acute pancreatitis,” Journal of Pathology, vol. 213, no. 3, pp. 239–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Mews, P. Phillips, R. Fahmy et al., “Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis,” Gut, vol. 50, no. 4, pp. 535–541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. V. Apte, P. S. Haber, S. J. Darby et al., “Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis,” Gut, vol. 44, no. 4, pp. 534–541, 1999. View at Scopus
  35. M. Preis and M. Korc :, “Signaling pathways in pancreatic cancer,” Critical Reviews in Eukaryotic Gene Expression, vol. 21, no. 2, pp. 115–129, 2011. View at Publisher · View at Google Scholar
  36. A. Masamune, T. Watanabe, K. Kikuta, and T. Shimosegawa, “Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis,” Clinical Gastroenterology and Hepatology, vol. 7, no. 11, pp. S48–S54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Shimizu, “Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis,” Journal of Gastroenterology and Hepatology, vol. 23, supplement 1, pp. S119–S121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Jaster and J. Emmrich, “Crucial role of fibrogenesis in pancreatic diseases,” Best Practice and Research in Clinical Gastroenterology, vol. 22, no. 1, pp. 17–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. C. Blobe, W. P. Schiemann, and H. F. Lodish, “Role of transforming growth factor β in human disease,” New England Journal of Medicine, vol. 342, no. 18, pp. 1350–1358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Khalil, “TGF-β: from latent to active,” Microbes and Infection, vol. 1, no. 15, pp. 1255–1263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. W. U. Guo-Yang, L. U. Qingjun, T. Hasenberg et al., “Association between EGF, TGF-βl, TNF-α gene polymorphisms and cancer of the pancreatic head,” Anticancer Research, vol. 30, no. 12, pp. 5257–5262, 2010. View at Scopus
  42. J. Y. C. Chow, M. Ban, H. L. Wu et al., “TGF-β downregulates PTEN via activation of NF-κB in pancreatic cancer cells,” American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 298, no. 2, pp. G275–G282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. J. Truty and R. Urrutia, “Basics of TGF-β and pancreatic cancer,” Pancreatology, vol. 7, no. 5-6, pp. 423–435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Aoyagi, T. Oda, T. Kinoshita et al., “Overexpression of TGF-β by infiltrated granulocytes correlates with the expression of collagen mRNA in pancreatic cancer,” British Journal of Cancer, vol. 91, no. 7, pp. 1316–1326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Ellenrieder, A. Buck, A. Harth et al., “KLF11 mediates a critical mechanism in TGF-β signaling that is inactivated by ERK-MAPK in pancreatic cancer cells,” Gastroenterology, vol. 127, no. 2, pp. 607–620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Teraoka, T. Sawada, Y. Yamashita et al., “TGF-beta1 promotes liver metastasis of pancreatic cancer by modulating the capacity of cellular invasion,” International Journal of Oncology, vol. 19, no. 4, pp. 709–715, 2001. View at Scopus
  47. V. Ellenrieder, S. F. Hendler, C. Ruhland, W. Boeck, G. Adler, and T. M. Gress, “TGF-β-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase-2 and the urokinase plasminogen activator system,” International Journal of Cancer, vol. 93, no. 2, pp. 204–211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Kleeff, T. Ishiwata, H. Maruyama et al., “The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer,” Oncogene, vol. 18, no. 39, pp. 5363–5372, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Zavoral, P. Minarikova, F. Zavada, C. Salek, and M. Minarik, “Molecular biology of pancreatic cancer,” World Journal of Gastroenterology, vol. 17, no. 24, pp. 2897–2908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Groblewska, B. Mroczko, U. Wereszczynska-Siemiatkowska, P. Mysliwiec, B. Kedra, and M. Szmitkowski, “Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 1, pp. 30–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Joshita, K. Nakazawa, Y. Sugiyama et al., “Granulocyte-colony stimulating factor-producing pancreatic adenosquamous carcinoma showing aggressive clinical course,” Internal Medicine, vol. 48, no. 9, pp. 687–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Ohtsubo, H. Mouri, J. Sakai et al., “Pancreatic cancer associated with granulocyte-colony stimulating factor production confirmed by immunohistochemistry,” Journal of Clinical Gastroenterology, vol. 27, no. 4, pp. 357–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. M. T. Wiekowski, M. W. Leach, E. W. Evans et al., “Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death,” Journal of Immunology, vol. 166, no. 12, pp. 7563–7570, 2001. View at Scopus
  54. J. L. Langowski, X. Zhang, L. Wu et al., “IL-23 promotes tumour incidence and growth,” Nature, vol. 442, no. 7101, pp. 461–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Barreiro, M. Yáñez-Mó, J. M. Serrador et al., “Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes,” Journal of Cell Biology, vol. 157, no. 7, pp. 1233–1245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Kleinhans, J. T. Kaifi, O. Mann et al., “The role of vascular adhesion molecules PECAM-1 (CD 31), VCAM-1 (CD 106), E-selectin (CD62E) and P-selectin (CD62P) in severe porcine pancreatitis,” Histology and Histopathology, vol. 24, no. 5, pp. 551–557, 2009. View at Scopus
  57. H. B. Pollard, M. Srivastava, O. Eidelman et al., “Protein microarray platforms for clinical proteomics,” Proteomics-Clinical Applications, vol. 1, no. 9, pp. 934–952, 2007. View at Publisher · View at Google Scholar · View at Scopus