About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 371503, 9 pages
http://dx.doi.org/10.1155/2012/371503
Review Article

Pathogenesis of Helicobacter pylori-Related Gastroduodenal Diseases from Molecular Epidemiological Studies

1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan
2Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. Debakey Veterans Affairs Medical Center, 2002 Holcombe Boulevard, Houston, TX 77030, USA

Received 16 March 2012; Accepted 27 April 2012

Academic Editor: Ping-I Hsu

Copyright © 2012 Yoshio Yamaoka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Malaty, “Epidemiology of Helicobacter pylori infection,” Best Practice and Research: Clinical Gastroenterology, vol. 21, no. 2, pp. 205–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Alm, L. S. L. Ling, D. T. Moir et al., “Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori,” Nature, vol. 397, no. 6715, pp. 176–180, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. F. Tomb, O. White, A. R. Kerlavage et al., “The complete genome sequence of the gastric pathogen Helicobacter pylori,” Nature, vol. 388, no. 6642, pp. 539–547, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Atherton, “The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases,” Annual Review of Pathology, vol. 1, pp. 63–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. L. Cover and S. R. Blanke, “Helicobacter pylori VacA, a paradigm for toxin multifunctionality,” Nature Reviews Microbiology, vol. 3, no. 4, pp. 320–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. G. Kusters, A. H. M. Van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clinical Microbiology Reviews, vol. 19, no. 3, pp. 449–490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Boncristiano, S. R. Paccani, S. Barone et al., “The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms,” Journal of Experimental Medicine, vol. 198, no. 12, pp. 1887–1897, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Gebert, W. Fischer, E. Weiss, R. Hoffmann, and R. Haas, “Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation,” Science, vol. 301, no. 5636, pp. 1099–1102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Sundrud, V. J. Torres, D. Unutmaz, and T. L. Cover, “Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of vacA effects on IL-2 secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 20, pp. 7727–7732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Atherton, P. Cao, R. M. Peek, M. K. R. Tummuru, M. J. Blaser, and T. L. Cover, “Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration,” The Journal of Biological Chemistry, vol. 270, no. 30, pp. 17771–17777, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Sugimoto, M. R. Zali, and Y. Yamaoka, “The association of vacA genotypes and Helicobacter pylori-related gastroduodenal diseases in the Middle East,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 10, pp. 1227–1236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sugimoto and Y. Yamaoka, “The association of vacA genotype and Helicobacter pylori-related disease in Latin American and African populations,” Clinical Microbiology and Infection, vol. 15, no. 9, pp. 835–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yamaoka, T. Kodama, O. Gutierrez, J. G. Kim, K. Kashima, and D. Y. Graham, “Relationship between Helicobacter priori iceA, cagA, and vacA status and clinical outcome: studies in four different countries,” Journal of Clinical Microbiology, vol. 37, no. 7, pp. 2274–2279, 1999. View at Scopus
  14. Y. Yamaoka, E. Orito, M. Mizokami et al., “Helicobacter pylori in North and South America before Columbus,” FEBS Letters, vol. 517, no. 1–3, pp. 180–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Yamaoka, “Mechanisms of disease: Helicobacter pylori virulence factors,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 11, pp. 629–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Uchida, L. T. Nguyen, A. Takayama et al., “Analysis of virulence factors of Helicobacter pylori isolated from a Vietnamese population,” BMC Microbiology, vol. 9, article 175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Matsunari, S. Shiota, R. Suzuki, et al., “Association between Helicobacter pylori virulence factors and gastroduodenal diseases in Okinawa, Japan,” Journal of Clinical Microbiology, vol. 50, no. 3, pp. 876–883, 2012.
  18. J. L. Rhead, D. P. Letley, M. Mohammadi et al., “A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer,” Gastroenterology, vol. 133, no. 3, pp. 926–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Chung, A. Olivares, E. Torres, O. Yilmaz, H. Cohen, and G. Perez-Perez, “Diversity of vacA intermediate region among Helicobacter pylori strains from several regions of the world,” Journal of Clinical Microbiology, vol. 48, no. 3, pp. 690–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. R. Hussein, M. Mohammadi, Y. Talebkhan et al., “Differences in virulence markers between Helicobacter pylori strains from Iraq and those from Iran: potential importance of regional differences in H. pylori-associated disease,” Journal of Clinical Microbiology, vol. 46, no. 5, pp. 1774–1779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Basso, C. F. Zambon, D. P. Letley et al., “Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms,” Gastroenterology, vol. 135, no. 1, pp. 91–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. R. Jones, S. Jang, J. Y. Chang et al., “Polymorphisms in the intermediate region of vacA impact Helicobacter pylori-induced disease development,” Journal of Clinical Microbiology, vol. 49, no. 1, pp. 101–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Ogiwara, D. Y. Graham, and Y. Yamaoka, “vacA i-Region Subtyping,” Gastroenterology, vol. 134, no. 4, p. 1267, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Ferreira, C. Figueiredo, C. Bonet, et al., “Helicobacter pylori-vacA intermediate region genotyping and progression of gastric preneoplastic lesions,” American Journal of Gastroenterology, vol. 107, no. 1, pp. 145–146, 2012.
  25. H. Ogiwara, M. Sugimoto, T. Ohno et al., “Role of deletion located between the intermediate and middle regions of the Helicobacter pylori-vacA gene in cases of gastroduodenal diseases,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3493–3500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Censini, C. Lange, Z. Xiang et al., “cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14648–14653, 1996. View at Scopus
  27. S. Backert and M. Selbach, “Role of type IV secretion in Helicobacter pylori pathogenesis,” Cellular Microbiology, vol. 10, no. 8, pp. 1573–1581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Hatakeyama, “Oncogenic mechanisms of the Helicobacter pylori CagA protein,” Nature Reviews Cancer, vol. 4, no. 9, pp. 688–694, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. T. Franco, D. A. Israel, M. K. Washington, et al., “Activation of beta-catenin by carcinogenic Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10646–10651, 2005.
  30. A. T. Franco, E. Johnston, U. Krishna et al., “Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors,” Cancer Research, vol. 68, no. 2, pp. 379–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Ohnishi, H. Yuasa, and S. Tanaka, “Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse,” Chemtracts, vol. 21, no. 3, pp. 121–123, 2008. View at Scopus
  32. L. J. Van Doorn, C. Figueiredo, R. Sanna et al., “Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori,” Gastroenterology, vol. 115, no. 1, pp. 58–66, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Yamaoka, S. Kikuchi, H. M. T. ElZimaity, O. Gutierrez, M. S. Osato, and D. Y. Graham, “Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production,” Gastroenterology, vol. 123, no. 2, pp. 414–424, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Yamaoka, T. Kodama, K. Kashima, D. Y. Graham, and A. R. Sepulveda, “Variants of the 3′ region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases,” Journal of Clinical Microbiology, vol. 36, no. 8, pp. 2258–2263, 1998. View at Scopus
  35. Y. Yamaoka, H. M. T. El-Zimaity, O. Gutierrez et al., “Relationship between the cagA 3′ repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH,” Gastroenterology, vol. 117, no. 2, pp. 342–349, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Yamaoka, M. S. Osato, A. R. Sepulveda et al., “Molecular epidemiology of Helicobacter pylori: separation of H. pylori from East Asian and non-Asian countries,” Epidemiology and Infection, vol. 124, no. 1, pp. 91–96, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Miura, N. Ohnishi, S. Tanaka, K. Yanagiya, and M. Hatakeyama, “Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice,” International Journal of Cancer, vol. 125, no. 11, pp. 2497–2504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. K. Vilaichone, V. Mahachai, S. Tumwasorn, J. Y. Wu, D. Y. Graham, and Y. Yamaoka, “Molecular epidemiology and outcome of Helicobacter pylori infection in Thailand: a cultural cross roads,” Helicobacter, vol. 9, no. 5, pp. 453–459, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Kersulyte, A. K. Mukhopadhyay, B. Velapatino, et al., “Differences in genotypes of Helicobacter pylori from different human populations,” Journal of Bacteriology, vol. 182, no. 11, pp. 3210–3218, 2000.
  40. R. H. Argent, M. Kidd, R. J. Owen, R. J. Thomas, M. C. Limb, and J. C. Atherton, “Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori,” Gastroenterology, vol. 127, no. 2, pp. 514–523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Azuma, A. Yamakawa, S. Yamazaki et al., “Correlation between variation of the 3′ region of the cagA gene in Helicobacter pylori and disease outcome in Japan,” Journal of Infectious Diseases, vol. 186, no. 11, pp. 1621–1630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Batista, G. A. Rocha, A. M. C. Rocha et al., “Higher number of Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer,” BMC Microbiology, vol. 11, article 61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Holcombe, B. A. Omotara, J. Eldridge, and D. M. Jones, “H. pylori, the most common bacterial infection in Africa: a random serological study,” American Journal of Gastroenterology, vol. 87, no. 1, pp. 28–30, 1992. View at Scopus
  44. Y. Xia, Y. Yamaoka, Q. Zhu, I. Matha, and X. Gao, “A comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori,” PLoS ONE, vol. 4, no. 11, Article ID e7736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Selbach, F. E. Paul, S. Brandt et al., “Host cell interactome of tyrosine-phosphorylated bacterial proteins,” Cell Host and Microbe, vol. 5, no. 4, pp. 397–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Yamaoka, D. H. Kwon, and D. Y. Graham, “A Mr 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7533–7538, 2000. View at Scopus
  47. T. Kudo, H. Lu, J. Y. Wu et al., “Pattern of Transcription Factor Activation in Helicobacter pylori-Infected Mongolian Gerbils,” Gastroenterology, vol. 132, no. 3, pp. 1024–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Y. Wu, H. Lu, Y. Sun, D. Y. Graham, H. S. Cheung, and Y. Yamaoka, “Balance between polyoma enhancing activator 3 and activator protein 1 regulates Helicobacter pylori-stimulated matrix metalloproteinase 1 expression,” Cancer Research, vol. 66, no. 10, pp. 5111–5120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Lu, J. Y. Wu, T. Kudo, T. Ohno, D. Y. Graham, and Y. Yamaoka, “Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori,” Molecular Biology of the Cell, vol. 16, no. 10, pp. 4954–4966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Yamaoka, T. Kudo, H. Lu, A. Casola, A. R. Brasier, and D. Y. Graham, “Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infection,” Gastroenterology, vol. 126, no. 4, pp. 1030–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. F. H. Tabassam, D. Y. Graham, and Y. Yamaoka, “OipA plays a role in Helicobacter pylori-induced focal adhesion kinase activation and cytoskeletal re-organization,” Cellular Microbiology, vol. 10, no. 4, pp. 1008–1020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F. H. Tabassam, D. Y. Graham, and Y. Yamaoka, “Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3β phosphorylation,” Cellular Microbiology, vol. 11, no. 1, pp. 70–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Yamaoka, O. Ojo, S. Fujimoto et al., “Helicobacter pylori outer membrane proteins and gastroduodenal disease,” Gut, vol. 55, no. 6, pp. 775–781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Y. Graham, A. R. Opekun, M. S. Osato et al., “Challenge model for Helicobacter pylori infection in human volunteers,” Gut, vol. 53, no. 9, pp. 1235–1243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Yamaoka, M. Kita, T. Kodama et al., “Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation,” Gastroenterology, vol. 123, no. 6, pp. 1992–2004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Ando, R. M. Peek, D. Pride et al., “Polymorphisms of Helicobacter pylori HP0638 reflect geographic origin and correlate with cagA status,” Journal of Clinical Microbiology, vol. 40, no. 1, pp. 239–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Dossumbekova, C. Prinz, J. Mages et al., “Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms,” Journal of Infectious Diseases, vol. 194, no. 10, pp. 1346–1355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Lehours, A. Ménard, S. Dupouy et al., “Evaluation of the association of nine Helicobacter pylori virulence factors with strains involved in low-grade gastric mucosa-associated lymphoid tissue lymphoma,” Infection and Immunity, vol. 72, no. 2, pp. 880–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Fujimoto, O. Olaniyi Ojo, A. Arnqvist et al., “Helicobacter pylori BabA Expression, Gastric Mucosal Injury, and Clinical Outcome,” Clinical Gastroenterology and Hepatology, vol. 5, no. 1, pp. 49–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Lu, P. I. Hsu, D. Y. Graham, and Y. Yamaoka, “Duodenal ulcer promoting gene of Helicobacter pylori,” Gastroenterology, vol. 128, no. 4, pp. 833–848, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. N. R. Hussein, R. H. Argent, C. K. Marx, S. R. Patel, K. Robinson, and J. C. Atherton, “Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells,” Journal of Infectious Diseases, vol. 202, no. 2, pp. 261–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Yamaoka, “Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis,” Journal of Medical Microbiology, vol. 57, no. 5, pp. 545–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. N. R. Hussein, “The association of dupA and Helicobacter pylori-related gastroduodenal diseases,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, no. 7, pp. 817–821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Shiota, O. Matsunari, M. Watada, et al., “Systematic review and meta-analysis: the relationship between the Helicobacter pylori dupA gene and clinical outcomes,” Gut Pathogens, vol. 2, no. 1, article 13, 2010.
  65. D. M. M. Queiroz, G. A. Rocha, A. M. C. Rocha et al., “DupA polymorphisms and risk of Helicobacter pylori-associated diseases,” International Journal of Medical Microbiology, vol. 301, no. 3, pp. 225–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. S. W. Jung, M. Sugimoto, S. Shiota, et al., “The intact dupA cluster is a more reliableHelicobacter pylorivirulence marker than dupA alone,” Infection and Immunity, vol. 80, no. 1, pp. 381–387, 2012.
  67. W. Fischer, L. Windhager, S. Rohrer et al., “Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer,” Nucleic Acids Research, vol. 38, no. 18, pp. 6089–6101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Kawai, Y. Furuta, K. Yahara et al., “Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes,” BMC Microbiology, vol. 11, article 104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. S. McClain, C. L. Shaffer, D. A. Israel, R. M. Peek, and T. L. Cover, “Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer,” BMC Genomics, vol. 10, article 13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. D. McNamara and E. El-Omar, “Helicobacter pylori infection and the pathogenesis of gastric cancer: a paradigm for host-bacterial interactions,” Digestive and Liver Disease, vol. 40, no. 7, pp. 504–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. J. D. Oh, H. Kling-Bäckhed, M. Giannakis et al., “The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9999–10004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Kennemann, X. Didelot, T. Aebischer et al., “Helicobacter pylori genome evolution during human infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5033–5038, 2011. View at Publisher · View at Google Scholar · View at Scopus