About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 474907, 8 pages
http://dx.doi.org/10.1155/2012/474907
Clinical Study

Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer

1Department of Gastroenterology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
2Medical College, Soochow University, Suzhou, Jiangsu 215213, China
3Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200120, China

Received 13 April 2012; Accepted 8 May 2012

Academic Editor: Richard Ricachenevski Gurski

Copyright © 2012 Jing Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics,” CA Cancer Journal for Clinicians, vol. 59, pp. 225–249, 2009.
  2. W. K. Leung, M. S. Wu, Y. Kakugawa et al., “Screening for gastric cancer in Asia: current evidence and practice,” The Lancet Oncology, vol. 9, no. 3, pp. 279–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Wu, R. Xue, Z. Tang et al., “Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 396, no. 4, pp. 1385–1395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. L. Chen, H. Q. Tang, J. D. Hu, J. Fan, J. Hong, and J. Z. Gu, “Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry,” World Journal of Gastroenterology, vol. 16, no. 46, pp. 5874–5880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Marrelli and F. Roviello, “Prognostic score in gastric cancer patients,” Annals of Surgical Oncology, vol. 14, no. 2, pp. 362–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Yasui, N. Oue, P. A. Phyu, S. Matsumura, M. Shutoh, and H. Nakayama, “Molecular-pathological prognostic factors of gastric cancer: a review,” Gastric Cancer, vol. 8, no. 2, pp. 86–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. Macdonald, “Gastric cancer—new therapeutic options,” The New England Journal of Medicine, vol. 355, pp. 76–77, 2006.
  8. D. Cunningham and J. C. Yu, “East meets west in the treatment of gastric cancer,” New England Journal of Medicine, vol. 357, no. 18, pp. 1863–1865, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Rajdev, “Treatment options for surgically resectable gastric cancer,” Current Treatment Options in Oncology, vol. 11, pp. 14–23, 2010.
  10. M. Yilmaz and G. Christofori, “Mechanisms of motility in metastasizing cells,” Molecular Cancer Research, vol. 8, pp. 629–642, 2010.
  11. E. C. Y. Chan, P. K. Koh, M. Mal et al., “Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS),” Journal of Proteome Research, vol. 8, no. 1, pp. 352–361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Hu, H. Q. Tang, Q. Zhang et al., “Prediction of gastric cancer metastasis through urinary metabolomic investigation using GC/MS,” World Journal of Gastroenterology, vol. 17, no. 6, pp. 727–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Leerapun, S. V. Suravarapu, J. P. Bida et al., “The utility of lens culinaris agglutinin-reactive α-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population,” Clinical Gastroenterology and Hepatology, vol. 5, no. 3, pp. 394–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Y. Wang, C. Y. Lu, K. S. Chu, et al., “Prognostic significance of pre- and postoperative serum carcinoembryonic antigen levels in patients with colorectal cancer,” European Surgical Research, vol. 39, pp. 245–250, 2007.
  15. K. Hotta, K. Kiura, M. Tabata et al., “Role of early serial change in serum carcinoembryonic antigen levels as a predictive marker for radiological response to gefitinib in Japanese patients with non-small cell lung cancer,” Anticancer Research, vol. 27, no. 3, pp. 1737–1741, 2007. View at Scopus
  16. M. H. Torosian, “Stimulation of tumor growth by nutrition support,” Journal of Parenteral and Enteral Nutrition, vol. 16, p. 72, 1992.
  17. A. Kubota, M. M. Meguid, and D. C. Hitch, “Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors,” Cancer, vol. 69, no. 9, pp. 2343–2348, 1992. View at Scopus
  18. M. M. Muscaritoli, M. M. Meguid, J. L. Beverly, Z. J. Yang, C. Cangıano, and A. Cascıno, “Plasma free amino acid alterations occur early during tumor growth,” Clinical Research, vol. 42, p. 343A, 1994.
  19. H. Yamanaka, T. Kanemaki, M. Tsuji et al., “Branched-chain amino acid-supplemented nutritional support after gastrectomy for gastric cancer with special reference to plasma amino acid profiles,” Nutrition, vol. 6, no. 3, pp. 241–245, 1990. View at Scopus
  20. D. Steinhauser and J. Kopka, “Methods, applications and concepts of metabolite profiling: primary metabolism,” Experientia, vol. 97, pp. 171–194, 2007. View at Scopus
  21. D. G. Robertson, M. D. Reily, and J. D. Baker, “Metabonomics in pharmaceutical discovery and development,” Journal of Proteome Research, vol. 6, pp. 526–539, 2007.
  22. E. M. Lenz and I. D. Wilson, “Analytical strategies in metabonomics,” Journal of Proteome Research, vol. 6, pp. 443–458, 2007.
  23. C. K. Larive, “Metabonomics, metabolomics, and metabolic profiling,” Analytical and Bioanalytical Chemistry, vol. 387, no. 2, p. 523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, “Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics,” Analytical Chemistry, vol. 78, no. 13, pp. 4281–4290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Lindon, E. Holmes, and J. K. Nicholson, “Metabonomics techniques and applications to pharmaceutical research & development,” Pharmaceutical Research, vol. 23, no. 6, pp. 1075–1088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. Spratlin, N. J. Serkova, and S. G. Eckhardt, “Clinical applications of metabolomics in oncology: a review,” Clinical Cancer Research, vol. 15, pp. 431–440, 2009.
  27. P. A. Egner, J. D. Groopman, J. S. Wang, T. W. Kensler, and M. D. Friesen, “Quantification of aflatoxin-B1-N7-guanine in human urine by high-performance liquid chromatography and isotope dilution tandem mass spectrometry,” Chemical Research in Toxicology, vol. 19, no. 9, pp. 1191–1195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Cai, D. J. Boocock, W. P. Steward, and A. J. Gescher, “Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties,” Cancer Chemotherapy and Pharmacology, vol. 60, no. 2, pp. 257–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Madsen, T. Lundstedt, and J. Trygg, “Chemometrics in metabolomics—a review in human disease diagnosis,” Analytica Chimica Acta, vol. 659, pp. 23–33, 2010.
  30. Y. Nakayama, K. Matsumoto, Y. Inoue et al., “Correlation between the urinary dihydrouracil-uracil ratio and the 5-FU plasma concentration in patients treated with oral 5-FU analogs,” Anticancer Research, vol. 26, no. 5, pp. 3983–3988, 2006. View at Scopus
  31. X. He, A. Qiao, X. Wang et al., “Structural identification of methyl protodioscin metabolites in rats' urine and their antiproliferative activities against human tumor cell lines,” Steroids, vol. 71, no. 9, pp. 828–833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Tsikas, “Quantitative analysis of biomarkers, drugs and toxins in biological samples by immunoaffinity chromatography coupled to mass spectrometry or tandem mass spectrometry: a focused review of recent applications,” Journal of Chromatography B, vol. 878, no. 2, pp. 133–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Hirayama, K. Kami, M. Sugimoto et al., “Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry,” Cancer Research, vol. 69, no. 11, pp. 4918–4925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. M. Slupsky, H. Steed, T. H. Wells et al., “Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers,” Clinical Cancer Research, vol. 16, no. 23, pp. 5835–5841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Kim, S. L. Taylor, S. Ganti, L. Guo, M. V. Osier, and R. H. Weiss, “Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer,” Omics, vol. 15, no. 5, pp. 293–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Cavaliere, B. MacChione, M. Monteleone, A. Naccarato, G. Sindona, and A. Tagarelli, “Sarcosine as a marker in prostate cancer progression: a rapid and simple method for its quantification in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 400, no. 9, pp. 2903–2912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Liu, X. Wang, J. Zhang et al., “Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis,” Oncogene, vol. 29, no. 3, pp. 442–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Jamaspishvili, M. Kral, I. Khomeriki, V. Student, Z. Kolar, and J. Bouchal, “Urine markers in monitoring for prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 1, pp. 12–19, 2010. View at Publisher · View at Google Scholar · View at Scopus