About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 510764, 7 pages
http://dx.doi.org/10.1155/2012/510764
Clinical Study

Melatonin Levels in Serum and Ascitic Fluid of Patients with Hepatic Encephalopathy

1Department of Gastroenterology, Medical University of Lodz, 1 Haller’s Square, 90-647 Lodz, Poland
2Department of Neuroendocrinology, Medical University of Lodz, 1/3 Sterlinga street, 91-425 Lodz, Poland
3Department of Molecular Genetics, University of Lodz, 141/143 Pomorska street, 90-237 Lodz, Poland

Received 16 August 2012; Accepted 4 December 2012

Academic Editor: Paolo Gionchetti

Copyright © 2012 Cezary Chojnacki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Butterworth, “The neurobiology of hepatic encephalopathy,” Seminars in Liver Disease, vol. 16, no. 3, pp. 235–244, 1996. View at Scopus
  2. K. Weissenborn, J. C. Ennen, H. Schomerus, N. Rückert, and H. Hecker, “Neuropsychological characterization of hepatic encephalopathy,” Journal of Hepatology, vol. 34, no. 5, pp. 768–773, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ortiz, J. Córdoba, C. Jacas, M. Flavià, R. Esteban, and J. Guardia, “Neuropsychological abnormalities in cirrhosis include learning impairment,” Journal of Hepatology, vol. 44, no. 1, pp. 104–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. F. Xiong, Q. Chen, J. Chen, J. Zhou, and H. X. Wang, “Melatonin reduces the impairment of axonal transport and axonopathy induced by calyculin A,” Journal of Pineal Research, vol. 50, no. 3, pp. 319–327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. N. K. Singhal, G. Srivastava, D. K. Patel, S. K. Jain, and M. P. Singh, “Melatonin or silymarin reduces maneb- and paraquat-induced Parkinsons disease phenotype in the mouse,” Journal of Pineal Research, vol. 50, no. 2, pp. 97–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Stehle, A. Saade, O. Rawashdeh et al., “A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases,” Journal of Pineal Research, vol. 51, no. 1, pp. 17–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Reiter and D. X. Tan, “What constitutes a physiological concentration of melatonin?” Journal of Pineal Research, vol. 34, no. 1, pp. 79–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Venegas, J. A. García, G. Escames, et al., “Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations,” Journal of Pineal Research, vol. 52, no. 2, pp. 217–227, 2012.
  9. D. X. Tan, L. C. Manchester, E. Sanchez-Barcelo, M. D. Mediavilla, and R. J. Reiter, “Significance of high levels of endogenous melatonin in mammalian cerebrospinal fluid and in the central nervous system,” Current Neuropharmacology, vol. 8, no. 3, pp. 162–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. T. Raikhlin and I. M. Kvetnoy, “Melatonin and enterochromaffin cells,” Acta Histochemica, vol. 55, no. 1, pp. 19–24, 1976. View at Scopus
  11. G. Huether, B. Poeggeler, A. Reimer, and A. George, “Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract,” Life Sciences, vol. 51, no. 12, pp. 945–953, 1992. View at Scopus
  12. G. A. Bubenik, “Gastrointestinal melatonin: localization, function, and clinical relevance,” Digestive Diseases and Sciences, vol. 47, no. 10, pp. 2336–2348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Gibson, J. H. Gill, P. A. Khan et al., “Cytochrome P450 1B1 (CYP1B1) is overexpressed in human colon adenocarcinomas relative to normal colon: implications for drug development,” Molecular Cancer Therapeutics, vol. 2, no. 6, pp. 527–534, 2003. View at Scopus
  14. I. M. Kvetnoy, I. E. Ingel, T. V. Kvetnaia et al., “Gastrointestinal melatonin: cellular identification and biological role,” Neuroendocrinology Letters, vol. 23, no. 2, pp. 121–132, 2002. View at Scopus
  15. R. J. Reiter, D. X. Tan, J. C. Mayo, R. M. Sainz, J. Leon, and D. Bandyopadhyay, “Neurally-mediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract,” Journal of Physiology and Pharmacology, vol. 54, pp. 113–125, 2003. View at Scopus
  16. G. A. Bubenik, S. F. Pang, J. R. Cockshut et al., “Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep,” Journal of Pineal Research, vol. 28, no. 1, pp. 9–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. E. A. Lane and H. B. Noss, “Pharmacokinetics of melatonin in man: first pass hepatic metabolism,” Journal of Clinical Endocrinology and Metabolism, vol. 61, no. 6, pp. 1214–1216, 1985. View at Scopus
  18. G. Facciolá, M. Hidestrand, C. von Bahr, and G. Tybring, “Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes,” European Journal of Clinical Pharmacology, vol. 56, no. 12, pp. 881–888, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Ma, J. R. Idle, K. W. Krausz, and F. J. Gonzalez, “Metabolism of melatonin by human cytochromes P450,” Drug Metabolism and Disposition, vol. 33, no. 4, pp. 489–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. X. Tan, L. C. Manchester, R. J. Reiter, W. Qi, M. A. Hanes, and N. J. Farley, “High physiological levels of melatonin in the bile of mammals,” Life Sciences, vol. 65, no. 23, pp. 2523–2529, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Messner, G. Huether, T. Lorf, G. Ramadori, and H. Schwörer, “Presence of melatonin in the human hepatobiliary-gastrointestinal tract,” Life Sciences, vol. 69, no. 5, pp. 543–551, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Aust, T. Thalhammer, S. Humpeler et al., “The melatonin receptor subtype MT1 is expressed in human gallbladder epithelia,” Journal of Pineal Research, vol. 36, no. 1, pp. 43–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ardizzi, G. Grugni, G. Saglietti, and F. Morabito, “Circadian rhythm of melatonin (aMT) in liver cirrhosis,” Minerva Medica, vol. 89, no. 1-2, pp. 1–4, 1998. View at Scopus
  24. S. Montagnese, B. Middleton, A. R. Mani, D. J. Skene, and M. Y. Morgan, “On the origin and the consequences of circadian abnormalities in patients with cirrhosis,” American Journal of Gastroenterology, vol. 105, no. 8, pp. 1773–1781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. E. Steindl, P. Ferenci, and W. Marktl, “Impaired hepatic catabolism of melatonin in cirrhosis,” Annals of Internal Medicine, vol. 127, no. 6, p. 494, 1997. View at Scopus
  26. P. C. Zee, R. Mehta, F. W. Turek, and A. T. Blei, “Portacaval anastomosis disrupts circadian locomotor activity and pineal melatonin rhythms in rats,” Brain Research, vol. 560, no. 1-2, pp. 17–22, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. D. L. Coy, R. Mehta, P. Zee, F. Salchli, F. W. Turek, and A. T. Blei, “Portal-systemic shunting and the disruption of circadian locomotor activity in the rat,” Gastroenterology, vol. 103, no. 1, pp. 222–228, 1992. View at Scopus
  28. B. Finn, V. Shah, and J. Gottstein, “Neomycin improves a disrupted circadian rhythm in rats after portacaval anastomosis,” Hepatogastroenterolgy, no. 33, 1993.
  29. J. Ducis, “Effect of ammonia and R05-4864 on melatonin release in pineal,” Journal of Neurochemistry, vol. 62, article A-37, 1994.
  30. P. E. Steindl, B. Finn, B. Bendok, S. Rothke, P. C. Zee, and A. T. Blei, “Disruption of the diurnal rhythm of plasma melatonin in cirrhosis,” Annals of Internal Medicine, vol. 123, no. 4, pp. 274–277, 1995. View at Scopus
  31. A. J. Lewy, S. Ahmed, J. M. Latham Jackson, and R. L. Sack, “Melatonin shifts human circadian rhythms according to a phase-response curve,” Chronobiology International, vol. 9, no. 5, pp. 380–392, 1992. View at Scopus
  32. K. Celinski, P. C. Konturek, M. Slomka et al., “Altered basal and postprandial plasma melatonin, gastrin, ghrelin, leptin and insulin in patients with liver cirrhosis and portal hypertension without and with oral administration of melatonin or tryptophan,” Journal of Pineal Research, vol. 46, no. 4, pp. 408–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Suman, D. S. Barnes, N. N. Zein, G. N. Levinthal, J. T. Connor, and W. D. Carey, “Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of Child-Pugh and MELD scores,” Clinical Gastroenterology and Hepatology, vol. 2, no. 8, pp. 719–723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Montagnese, P. Amodio, and M. Y. Morgan, “Methods for diagnosing hepatic encephalopathy in patients with cirrhosis: a multidimensional approach,” Metabolic Brain Disease, vol. 19, no. 3-4, pp. 281–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Ferenci, A. Lockwood, K. Mullen, R. Tarter, K. Weissenborn, and A. T. Blei, “Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998,” Hepatology, vol. 35, no. 3, pp. 716–721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. D. X. Tan, L. D. Chen, B. Poeggeler, et al., “Melatonin: a potent endogenous hydroxyl radical scavenger,” Endocrine Journal, vol. 1, pp. 57–60, 1993.
  37. C. Rodriguez, J. C. Mayo, R. M. Sainz et al., “Regulation of antioxidant enzymes: a significant role for melatonin,” Journal of Pineal Research, vol. 36, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Galano, D. X. Tan, and R. J. Reiter, “Melatonin as a natural ally against oxidative stress: a physicochemical examination,” Journal of Pineal Research, vol. 51, no. 1, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. E. Letelier, J. Jara-Sandoval, A. Molina-Berríos, M. Faúndez, P. Aracena-Parks, and F. Aguilera, “Melatonin protects the cytochrome P450 system through a novel antioxidant mechanism,” Chemico-Biological Interactions, vol. 185, no. 3, pp. 208–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Castillo, V. Salazar, C. Ariznavarreta, E. Vara, and J. A. F. Tresguerres, “Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats,” Journal of Pineal Research, vol. 38, no. 4, pp. 240–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Koc, S. Taysi, M. E. Buyukokuroglu, and N. Bakan, “Melatonin protects rat liver against irradiation-induced oxidative injury,” Journal of Radiation Research, vol. 44, no. 3, pp. 211–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. W. M. Daniels, R. J. Reiter, D. Melchiorri, E. Sewerynek, M. I. Pablos, and G. G. Ortiz, “Melatonin counteracts lipid peroxidation induced by carbon tetrachloride but does not restore glucose-6 phosphatase activity,” Journal of Pineal Research, vol. 19, no. 1, pp. 1–6, 1995. View at Scopus
  43. E. Sewerynek, R. J. Reiter, D. Melchiorri, G. G. Ortiz, and A. Lewinski, “Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin,” Hepato-Gastroenterology, vol. 43, no. 10, pp. 898–905, 1996. View at Scopus
  44. N. Bülbüller, Z. Cetinkaya, M. A. Akkus, et al., “The effects of melatonin and prostaglandin E1 analogue on experimental hepatic ischaemia reperfusion damage,” International Journal of Clinical Practice, vol. 57, pp. 857–860, 2003.
  45. M. Vairetti, A. Ferrigno, R. Bertone et al., “Exogenous melatonin enhances bile flow and ATP levels after cold storage and reperfusion in rat liver: implications for liver transplantation,” Journal of Pineal Research, vol. 38, no. 4, pp. 223–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Zaoualí, R. J. Reiter, S. Padrissa-Altés et al., “Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury,” Journal of Pineal Research, vol. 50, no. 2, pp. 213–221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Tahan, R. Ozaras, B. Canbakan et al., “Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats,” Journal of Pineal Research, vol. 37, no. 2, pp. 78–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Túnez, M. C. Muñoz, M. A. Villavicencio et al., “Hepato- and neurotoxicity induced by thioacetamide: protective effects of melatonin and dimethylsulfoxide,” Pharmacological Research, vol. 52, no. 3, pp. 223–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Cruz, F. J. Padillo, E. Torres et al., “Melatonin prevents experimental liver cirrhosis induced by thioacetamide in rats,” Journal of Pineal Research, vol. 39, no. 2, pp. 143–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Wang, W. Wei, N. P. Wang et al., “Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress,” Life Sciences, vol. 77, no. 15, pp. 1902–1915, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Chen, C. Zhang, M. Zhao, et al., “Melatonin alleviates lipopolysaccharide-induced hepatic SREBP-1c activation and lipid accumulation in mice,” Journal of Pineal Research, vol. 51, pp. 416–425, 2011.
  52. Y. Ohta, M. Kongo, and T. Kishikawa, “Melatonin exerts a therapeutic effect on cholestatic liver injury in rats with bile duct ligation,” Journal of Pineal Research, vol. 34, no. 2, pp. 119–126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. F. J. Padillo, A. Cruz, C. Navarrete et al., “Melatonin prevents oxidative stress and hepatocyte cell death induced by experimental cholestasis,” Free Radical Research, vol. 38, no. 7, pp. 697–704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Esrefoglu, M. Gül, M. H. Emre, A. Polat, and M. A. Selimoglu, “Protective effect of low dose of melatonin against cholestatic oxidative stress after common bile duct ligation in rats,” World Journal of Gastroenterology, vol. 11, no. 13, pp. 1951–1956, 2005. View at Scopus
  55. A. Barlas, H. Çevik, S. Arbak et al., “Melatonin protects against pancreaticobiliary inflammation and associated remote organ injury in rats: role of neutrophils,” Journal of Pineal Research, vol. 37, no. 4, pp. 267–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Wang, W. Wei, Y. X. Shen et al., “Protective effect of melatonin against liver injury in mice induced by Bacillus Calmette-Guerin plus lipopolysaccharide,” World Journal of Gastroenterology, vol. 10, no. 18, pp. 2690–2696, 2004. View at Scopus
  57. R. J. Reiter, S. D. Paredes, L. C. Manchester, and D. X. Tan, “Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 4, pp. 175–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Sahna, H. Parlakpinar, N. Vardi, Y. Ciǧremis, and A. Acet, “Efficacy of melatonin as protectant against oxidative stress and structural changes in liver tissue in pinealectomized rats,” Acta Histochemica, vol. 106, no. 5, pp. 331–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Mathes, “Hepatoprotective actions of melatonin: possible mediation by melatonin receptors,” World Journal of Gastroenterology, vol. 16, no. 48, pp. 6087–6097, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. R. T. Hong, J. M. Xu, and Q. Mei, “Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats,” World Journal of Gastroenterology, vol. 15, no. 12, pp. 1452–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Tahan, H. Akin, F. Aydogan et al., “Melatonin ameliorates liver fibrosis induced by bile-duct ligation in rats,” Canadian Journal of Surgery, vol. 53, no. 5, pp. 313–318, 2010. View at Scopus
  62. M. Pan, Y. L. Song, J. M. Xu, and H. Z. Gan, “Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats,” Journal of Pineal Research, vol. 41, no. 1, pp. 79–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Cichoz-Lach, K. Celinski, P. C. Konturek, et al., “The effects of L-tryptophan and melatonin on selected biochemical parameters in patients with steatohepatitis,” Journal of Physiology and Pharmacology, vol. 61, pp. 577–5780, 2010.
  64. M. Gonciarz, Z. Gonciarz, W. Bielanski et al., “The pilot study of 3-month course of melatonin treatment of patients with nonalcoholic steatohepatitis: effect on plasma levels of liver enzymes, lipids and melatonin,” Journal of Physiology and Pharmacology, vol. 61, no. 6, pp. 705–710, 2010. View at Scopus
  65. A. Nickkholgh, H. Schneider, M. Sobirey et al., “The use of high-dose melatonin in liver resection is safe: first clinical experience,” Journal of Pineal Research, vol. 50, no. 4, pp. 381–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Iguchi, K. I. Kato, and H. Ibayashi, “Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis,” Journal of Clinical Endocrinology and Metabolism, vol. 54, no. 5, pp. 1025–1027, 1982. View at Scopus
  67. D. Velissaris, V. Karamouzos, P. Polychronopoulos, and M. Karanikolas, “Chronotypology and melatonin alterations in minimal hepatic encephalopathy,” Journal of Circadian Rhythms, vol. 7, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. P. E. Steindl, B. Finn, B. Bendok, et al., “Changes in the 24-hour rhythm of plasma melatonin in patients with liver cirrhosis—relation to sleep architecture,” Wien Klin Wochenschr, vol. 109, pp. 741–746, 1997.
  69. J. Córdoba, J. Cabrera, L. Lataif, P. Penev, P. Zee, and A. T. Blei, “High prevalence of sleep disturbance in cirrhosis,” Hepatology, vol. 27, no. 2, pp. 339–345, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Montagnese, B. Middleton, A. R. Mani, D. J. Skene, and M. Y. Morgan, “Sleep and circadian abnormalities in patients with cirrhosis: features of delayed sleep phase syndrome?” Metabolic Brain Disease, vol. 24, no. 3, pp. 427–439, 2009. View at Publisher · View at Google Scholar · View at Scopus