About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 670418, 10 pages
http://dx.doi.org/10.1155/2012/670418
Review Article

Effect of Gastrointestinal Surgical Manipulation on Metabolic Syndrome: A Focus on Metabolic Surgery

1Division of General Surgery, Department of Medico-Surgical Sciences and Biotechnology, Hospital ICOT, Sapienza University of Rome, via F. Faggiana 1668, 04100 Latina, Italy
2Division of General Surgery, Hospital of Civita Castellana, via Ferretti 169, 01033 Civita Castellana (VT), Italy

Received 12 July 2012; Accepted 6 September 2012

Academic Editor: Dan L. Dumitrascu

Copyright © 2012 Mario Rizzello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, World Health Report, [WWW document], 2002, http://www.who.int/whr/2002/en/whr02_en.pdf.
  2. S. M. Grundy, H. B. Brewer Jr., J. I. Cleeman, S. C. Smith, and C. Lenfant, “Definition of metabolic syndrome: report of the national heart, lung, and blood institute/American heart association conference on scientific issues related to definition,” Circulation, vol. 109, no. 3, pp. 433–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. W. B. Inabnet III, D. A. Winegar, B. Sherif, and M. G. Sarr, “Early outcomes of bariatric surgery in patients with metabolic syndrome: an analysis of the bariatric outcomes longitudinal database,” Journal of the American College of Surgeons, vol. 214, no. 4, pp. 550–556, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. D. W. Richardson, M. E. Mason, and A. I. Vinik, “Update: metabolic and cardiovascular consequences of bariatric surgery,” Endocrinology and Metabolism Clinics of North America, vol. 40, no. 1, pp. 81–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Tice, L. Karliner, J. Walsh, A. J. Petersen, and M. D. Feldman, “Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures,” American Journal of Medicine, vol. 121, no. 10, pp. 885–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. R. Silberhumer, K. Miller, A. Pump et al., “Long-term results after laparoscopic adjustable gastric banding in adolescent patients: follow-up of the Austrian experience,” Surgical Endoscopy, vol. 25, no. 9, pp. 2993–2999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Dixon, P. E. O'Brien, J. Playfair et al., “Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial,” The Journal of the American Medical Association, vol. 299, no. 3, pp. 316–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Wickremesekera, G. Miller, T. D. Naotunne, G. Knowles, and R. S. Stubbs, “Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study,” Obesity Surgery, vol. 15, no. 4, pp. 474–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. H. Ballantyne, D. Farkas, S. Laker, and A. Wasielewski, “Short-term changes in insulin resistance following weight loss surgery for morbid obesity: laparoscopic adjustable gastric banding versus laparoscopic Roux-en-Y gastric bypass,” Obesity Surgery, vol. 16, no. 9, pp. 1189–1197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. C. Sala, R. S. Torrinhas, S. B. Heymsfield, and D. L. Waitzberg, “Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction,” Obesity Surgery, vol. 22, no. 1, pp. 167–176, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Sjöström, A. K. Lindroos, M. Peltonen et al., “Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery,” The New England Journal of Medicine, vol. 351, no. 26, pp. 2683–2693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. R. Schauer, B. Burguera, S. Ikramuddin et al., “Effect of laparoscopic Roux-En Y gastric bypass on type 2 diabetes mellitus,” Annals of Surgery, vol. 238, no. 4, pp. 467–485, 2003. View at Scopus
  13. T. C. Hall, M. G. C. Pellen, P. C. Sedman, and P. K. Jain, “Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity,” Obesity Surgery, vol. 20, no. 9, pp. 1245–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Dixon and P. E. O'Brien, “Lipid profile in the severely obese: changes with weight loss after lap-band surgery,” Obesity Research, vol. 10, no. 9, pp. 903–910, 2002. View at Scopus
  15. A. Obeid, J. Long, M. Kakade, R. H. Clements, R. Stahl, and J. Grams, “Laparoscopic Roux-en-Y gastric bypass: long term clinical outcomes,” Surgical Endoscopy. In press. View at Publisher · View at Google Scholar
  16. N. Scopinaro, G. M. Marinari, G. B. Camerini, F. S. Papadia, and G. F. Adami, “Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study,” Diabetes Care, vol. 28, no. 10, pp. 2406–2411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. F. Adami, R. Cordera, G. Camerini, G. M. Marinari, and N. Scopinaro, “Recovery of insulin sensitivity in obese patients at short term after biliopancreatic diversion,” Journal of Surgical Research, vol. 113, no. 2, pp. 217–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Sarson, N. Scopinaro, and S. R. Bloom, “Gut hormone changes after jejunoileal (JIB) or biliopancreatic (BPB) bypass surgery for morbid obesity,” International Journal of Obesity, vol. 5, no. 5, pp. 471–480, 1981. View at Scopus
  19. G. Silecchia, C. Boru, A. Pecchia et al., “Effectiveness of laparoscopic sleeve gastrectomy (first stage of biliopancreatic diversion with duodenal switch) on co-morbidities in super-obese high-risk patients,” Obesity Surgery, vol. 16, no. 9, pp. 1138–1144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Rizzello, F. Abbatini, G. Casella et al., “Early postoperative insulin-resistance changes after sleeve gastrectomy,” Obesity Surgery, vol. 20, no. 1, pp. 50–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Abbatini, M. Rizzello, G. Casella et al., “Long-term effects of laparoscopic sleeve gastrectomy, gastric bypass, and adjustable gastric banding on type 2 diabetes,” Surgical Endoscopy and Other Interventional Techniques, vol. 24, no. 5, pp. 1005–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. L. DePaula, A. L. V. Macedo, N. Rassi et al., “Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35,” Surgical Endoscopy and Other Interventional Techniques, vol. 22, no. 3, pp. 706–716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Schernthaner and J. M. Morton, “Bariatric surgery in patients with morbid obesity and type 2 diabetes,” Diabetes Care, vol. 31, supplement 2, pp. S297–S302, 2008. View at Scopus
  24. K. S. Polonsky, B. Gumbiner, D. Ostrega, K. Griver, H. Tager, and R. R. Henry, “Alterations in immunoreactive proinsulin and insulin clearance induced by weight loss in NIDDM,” Diabetes, vol. 43, no. 7, pp. 871–877, 1994. View at Scopus
  25. B. Gumbiner, E. van Cauter, W. F. Beltz et al., “Abnormalities of insulin pulsatility and glucose oscillations during meals in obese noninsulin-dependent diabetic patients: effects of weight reduction,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 6, pp. 2061–2068, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Rubino, “Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis,” Diabetes Care, vol. 31, supplement 2, pp. 290–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Rubino and J. Marescaux, “Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease,” Annals of Surgery, vol. 239, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. D. Strader, T. R. Clausen, S. Z. Goodin, and D. Wendt, “Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats,” Obesity Surgery, vol. 19, no. 1, pp. 96–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Rubino, A. Forgione, D. E. Cummings et al., “The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes,” Annals of Surgery, vol. 244, no. 5, pp. 741–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Silecchia, D. Capoccia, M. C. Ribaudo et al., “Improvement of insulin sensitivity and diabetes in patients after laparoscopic bariatric surgery2006,” Obesity Surgery, vol. 16, no. 8, article 972.
  31. J. Vidal, A. Ibarzabal, F. Romero et al., “Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects,” Obesity Surgery, vol. 18, no. 9, pp. 1077–1082, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Bose, B. Oliván, J. Teixeira, F. X. Pi-Sunyer, and B. Laferrère, “Do incretins play a role in the remission of type 2 diabetes after gastric bypass surgery: what are the evidence?” Obesity Surgery, vol. 19, no. 2, pp. 217–229, 2009. View at Publisher · View at Google Scholar
  33. S. N. Karamanakos, K. Vagenas, F. Kalfarentzos, and T. K. Alexandrides, “Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study,” Annals of surgery, vol. 247, no. 3, pp. 401–407, 2008. View at Scopus
  34. R. Peterli, B. Wölnerhanssen, T. Peters et al., “Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial,” Annals of Surgery, vol. 250, no. 2, pp. 234–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Pacheco, D. A. de Luis, A. Romero et al., “The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats,” American Journal of Surgery, vol. 194, no. 2, pp. 221–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Patriti, E. Facchiano, C. Annetti et al., “Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model,” Obesity Surgery, vol. 15, no. 9, pp. 1258–1264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. C. Ramos, M. P. Galvão Neto, Y. M. de Souza et al., “Laparoscopic duodenal-jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI < 30 kg/m2 (LBMI),” Obesity Surgery, vol. 19, no. 3, pp. 307–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Buchwald, Y. Avidor, E. Braunwald et al., “Bariatric surgery: a systematic review and meta-analysis,” The Journal of the American Medical Association, vol. 292, no. 14, pp. 1724–1737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Buchwald, R. Estok, K. Fahrbach et al., “Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis,” American Journal of Medicine, vol. 122, no. 3, pp. 248.e5–256.e5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. V. G. Athyros, K. Tziomalos, A. Karagiannis, and D. P. Mikhailidis, “Cardiovascular benefits of bariatric surgery in morbidly obese patients,” Obesity Reviews, vol. 12, no. 7, pp. 515–524, 2011. View at Publisher · View at Google Scholar · View at Scopus