About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 781765, 10 pages
http://dx.doi.org/10.1155/2012/781765
Review Article

Desmoplasia in Pancreatic Cancer. Can We Fight It?

1Oncology Unit, Third Department of Medicine, Sotiria General Hospital, University of Athens, 10679 Athens, Greece
2Tufts University School of Medicine, Boston, MA 02111, USA

Received 25 May 2012; Accepted 17 September 2012

Academic Editor: Davor Stimac

Copyright © 2012 E. E. Merika et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Lohr, B. Trautmann, M. Gottler et al., “Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins,” British Journal of Cancer, vol. 69, no. 1, pp. 144–151, 1994. View at Scopus
  2. T. Tani, A. Lumme, A. Linnala et al., “Pancreatic carcinomas deposit laminin-5, preferably adhere to laminin- 5, and migrate on the newly deposited basement membrane,” American Journal of Pathology, vol. 151, no. 5, pp. 1289–1302, 1997. View at Scopus
  3. M. Löhr, B. Trautmann, M. Göttler et al., “Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas,” Pancreas, vol. 12, no. 3, pp. 248–259, 1996. View at Scopus
  4. R. J. Weinel, A. Rosendahl, K. Neumann et al., “Expression and function of VLA-α2, -α3, -α5 and -α6-integrin receptors in pancreatic carcinoma,” International Journal of Cancer, vol. 52, no. 5, pp. 827–833, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Korc, “Pancreatic cancer—associated stroma production,” American Journal of Surgery, vol. 194, no. 4 supplement, pp. S84–S86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. K. Wendt, M. Tian, and W. P. Schiemann, “Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression,” Cell and Tissue Research, vol. 347, no. 1, pp. 85–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. L. Elliott and G. C. Blobe, “Role of transforming growth factor beta in human cancer,” Journal of Clinical Oncology, vol. 23, no. 9, pp. 2078–2093, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Löhr, C. Schmidt, J. Ringel et al., “Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma,” Cancer Research, vol. 61, no. 2, pp. 550–555, 2001. View at Scopus
  9. M. A. Shields, S. Dangi-Garimella, S. B. Krantz, D. J. Bentrem, and H. G. Munshi, “Pancreatic cancer cells respond to type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion,” The Journal of Biological Chemistry, vol. 286, no. 12, pp. 10495–10504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Lahn, S. Kloeker, and B. S. Berry, “TGF-β inhibitors for the treatment of cancer,” Expert Opinion on Investigational Drugs, vol. 14, no. 6, pp. 629–643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Miyata, A. Azuma, S. Hozawa et al., “Transforming growth factor beta and Ras/MEK/ERK signaling regulate the expression level of a novel tumor suppressor lefty,” Pancreas, vol. 41, no. 5, pp. 745–752, 2012.
  12. H. Ungefroren, S. Sebens, S. Groth, F. Gieseler, and F. Fändrich, “The src family kinase inhibitors PP2 and PP1 block TGF-beta1-mediated cellular responses by direct and differential inhibition of type I and type II TGF-beta receptors,” Current Cancer Drug Targets, vol. 11, no. 4, pp. 524–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. J. Kim, J. S. Hwang, Y. B. Hong, I. Bae, and Y. S. Seong, “Transforming growth factor beta receptor I inhibitor sensitizes drug-resistant pancreatic cancer cells to gemcitabine,” Anticancer Research, vol. 32, no. 3, pp. 799–806, 2012.
  14. D. Melisi, S. Ishiyama, G. M. Sclabas et al., “LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 829–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. R. Ahnert, J. Baselga, E. Calvo et al., “First human dose (FHD) study of the oral transforming growth factor-beta receptor I kinase inhibitor LY2157299 in patients with treatment-refractory malignant glioma,” Journal of Clinical Oncology, vol. 29, supplement, abstract 3011, 2011, ASCO Annual Meeting.
  16. S. Medicherla, L. Li, Y. M. Jing et al., “Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment,” Anticancer Research B, vol. 27, no. 6, pp. 4149–4157, 2007. View at Scopus
  17. K. H. Schlingensiepen, F. Jaschinski, S. A. Lang et al., “Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer,” Cancer Science, vol. 102, no. 6, pp. 1193–1200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ostapoff, B. Cenik, R. Schwarz, and R. A. Brekken, “Effect of 2G8, a TGF-beta-R2 inhibitor, on TGF-beta signaling and migration in an immunocompetent pancreatic cancer model,” Journal of Clinical Oncology, vol. 30, supplement 4, abstract 230, 2012, ASCO Annual Meeting.
  19. A. Hilbig and H. Oettle, “Transforming growth factor beta in pancreatic cancer,” Current Pharmaceutical Biotechnology, vol. 12, no. 12, pp. 2158–2164, 2011.
  20. N. A. Schultz, C. Dehlendorff, J. Werner et al., “Diagnostic MicroRNA serum profile in pancreatic cancer,” Journal of Clinical Oncology, vol. 30, supplement 4, abstract 160, 2012, ASCO Annual Meeting.
  21. A. S. Strimpakos, K. N. Syrigos, and M. W. Saif, “Translational research. New findings and potential future applications in pancreatic adenocarcinoma,” Journal of the Pancreas, vol. 13, no. 2, pp. 177–179, 2012.
  22. E. C. Connolly, E. F. Saunier, D. Quigley et al., “Outgrowth of drug-resistant carcinomas expressing markers of tumor aggression after long-term TβRI/II Kinase inhibition with LY2109761,” Cancer Research, vol. 71, no. 6, pp. 2339–2349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Fuxe, T. Vincent, and A. G. De Herreros, “Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes,” Cell Cycle, vol. 9, no. 12, pp. 2363–2374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kikuta, A. Masamune, T. Watanabe et al., “Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells,” Biochemical and Biophysical Research Communications, vol. 403, no. 3-4, pp. 380–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. S. Mantoni, S. Lunardi, O. Al-Assar, A. Masamune, and T. B. Brunner, “Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling,” Cancer Research, vol. 71, no. 10, pp. 3453–3458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Ishiwata, Y. Matsuda, T. Yamamoto, E. Uchida, M. Korc, and Z. Naito, “Enhanced expression of fibroblast growth factor receptor 2 IIIc promotes human pancreatic cancer cell proliferation,” American Journal of Pathology, vol. 180, no. 5, pp. 1928–1941, 2012.
  27. E. Tassi and A. Wellstein, “Tumor angiogenesis: initiation and targeting—therapeutic targeting of an FGF-binding protein, an angiogenic switch molecule, and indicator of early stages of gastrointestinal adenocarcinomas,” Cancer Research and Treatment, vol. 38, no. 4, pp. 189–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Wagner, M. E. Lopez, M. Cahn, and M. Korc, “Suppression of fibroblast growth factor receptor signaling inhibits pancreatic cancer growth in vitro and in vivo,” Gastroenterology, vol. 114, no. 4, pp. 798–807, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Ringel, R. Jesnowski, C. Schmidt et al., “CD44 in normal human pancreas and pancreatic carcinoma cell lines,” Teratog Carcinog Mutagen, vol. 21, no. 1, pp. 97–106, 2001.
  30. J. M. Nam, Y. Chung, H. C. Hsu, and C. C. Park, “β1 integrin targeting to enhance radiation therapy,” International Journal of Radiation Biology, vol. 85, no. 11, pp. 923–928, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Kawano, S. Yanoma, Y. Nakamura et al., “Evaluation of soluble adhesion molecules CD44 (CD44st, CD44v5, CD44v6), ICAM-1, and VCAM-1 as tumor markers in head and neck cancer,” American Journal of Otolaryngology, vol. 26, no. 5, pp. 308–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Kobayashi, S. Miyoshi, T. Mikami et al., “Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization,” Cancer Research, vol. 70, no. 18, pp. 7073–7083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Edward, C. Gillan, D. Micha, and R. H. Tammi, “Tumour regulation of fibroblast hyaluronan expression: a mechanism to facilitate tumour growth and invasion,” Carcinogenesis, vol. 26, no. 7, pp. 1215–1223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. B. P. Toole and M. G. Slomiany, “Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells,” Seminars in Cancer Biology, vol. 18, no. 4, pp. 244–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. A. Singleton, T. Mirzapoiazova, Y. Guo et al., “High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness,” American Journal of Physiology, vol. 299, no. 5, pp. L639–L651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Tanaka, Y. Makiyama, and Y. Mitsui, “Anti-CD44 monoclonal antibody (IM7) induces murine systemic shock mediated by platelet activating factor,” Journal of Autoimmunity, vol. 18, no. 1, pp. 9–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. B. P. Toole and M. G. Slomiany, “Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance,” Drug Resistance Updates, vol. 11, no. 3, pp. 110–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Edward, J. A. Quinn, S. M. Pasonen-Seppänen, B. A. McCann, and R. H. Tammi, “4-Methylumbelliferone inhibits tumour cell growth and the activation of stromal hyaluronan synthesis by melanoma cell-derived factors,” British Journal of Dermatology, vol. 162, no. 6, pp. 1224–1232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Kultti, S. Pasonen-Seppänen, M. Jauhiainen et al., “4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3,” Experimental Cell Research, vol. 315, no. 11, pp. 1914–1923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Urakawa, Y. Nishida, J. Wasa et al., “Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo,” International Journal of Cancer, vol. 130, no. 2, pp. 454–466, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Hajime, Y. Shuichi, N. Makoto et al., “Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice,” International Journal of Cancer, vol. 120, no. 12, pp. 2704–2709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Morohashi, A. Kon, M. Nakai et al., “Study of hyaluronan synthase inhibitor, 4-methylumbelliferone derivatives on human pancreatic cancer cell (KP1-NL),” Biochemical and Biophysical Research Communications, vol. 345, no. 4, pp. 1454–1459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Nakazawa, S. Yoshihara, D. Kudo et al., “4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells,” Cancer Chemotherapy and Pharmacology, vol. 57, no. 2, pp. 165–170, 2006. View at Scopus
  44. M. A. Jacobetz, D. S. Chan, A. Neesse et al., “Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer,” Gut. In press.
  45. C. B. Thompson, H. M. Shepard, P. M. O'Connor et al., “Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models,” Molecular Cancer Therapeutics, vol. 9, no. 11, pp. 3052–3064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Cheng, E. Merika, K. N. Syrigos, and M. W. Saif, “Novel agents for the treatment of pancreatic adenocarcinoma. Highlights from the “2011 ASCO Annual Meeting”. Chicago, IL, USA; June 3–7,” Journal of Pancreas, vol. 12, no. 4, pp. 334–338, 2011.
  47. S. P. Thayer, M. P. Di Magliano, P. W. Heiser et al., “Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis,” Nature, vol. 425, no. 6960, pp. 851–856, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Walter, N. Omura, S. M. Hong et al., “Overexpression of smoothened activates the Sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts,” Clinical Cancer Research, vol. 16, no. 6, pp. 1781–1789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Tian, C. A. Callahan, K. J. Dupree et al., “Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4254–4259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. R. L. Yauch, S. E. Gould, S. J. Scales et al., “A paracrine requirement for hedgehog signalling in cancer,” Nature, vol. 455, no. 7211, pp. 406–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Feldmann, V. Fendrich, K. McGovern et al., “An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer,” Molecular Cancer Therapeutics, vol. 7, no. 9, pp. 2725–2735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F.C. Kelleher and R. McDermott, “Aberrations and therapeutics involving the developmental pathway Hedgehog in pancreatic cancer,” Vitamins and Hormones, vol. 88, pp. 355–378, 2012.
  53. K. P. Olive, M. A. Jacobetz, C. J. Davidson et al., “Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer,” Science, vol. 324, no. 5933, pp. 1457–1461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Bisht, P. Brossart, A. Maitra, and G. Feldmann, “Agents targeting the Hedgehog pathway for pancreatic cancer treatment,” Current Opinion in Investigational Drugs, vol. 11, no. 12, pp. 1387–1398, 2010. View at Scopus
  55. D. A. Richards, J. Stephenson, B. M. Wolpin et al., “A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer,” Journal of Clinical Oncology, vol. 30, supplement 4, abstract 213, 2012, ASCO Annual Meeting. View at Scopus
  56. B. N. Singh, J. Fu, R. K. Srivastava, and S. Shankar, “Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms,” PLOS ONE, vol. 6, no. 11, article e27306, p. 1, 2011.
  57. E. De Smaele, E. Ferretti, and A. Gulino, “Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers,” Current Opinion in Investigational Drugs, vol. 11, no. 6, pp. 707–718, 2010. View at Scopus
  58. P. M. LoRusso, C. M. Rudin, J. C. Reddy et al., “Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors,” Clinical Cancer Research, vol. 17, no. 8, pp. 2502–2511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Fukahori, “Efficacy of gemcitabine as second-line therapy after S-1 therapy failure in advanced pancreatic carcinoma,” Journal of Clinical Oncology, vol. 30, supplement 4, abstract 248, 2012, ASCO Annual Meeting. View at Scopus
  60. M. Choi, R. Kim, and M.W. Saif, “What options are available for refractory pancreatic cancer?” Journal of Pancreas, vol. 13, no. 2, pp. 163–165, 2012.
  61. S. R. Palmer, C. Erlichman, M. Fernandez-Zapico et al., “Phase I trial erlotinib, gemcitabine, and the hedgehog inhibitor, GDC-0449,” Journal of Clinical Oncology, vol. 29, supplement, abstract 3092, 2011, ASCO Annual Meeting. View at Scopus
  62. N. B. Hassounah, T. A. Bunch, and K. M. McDermott, “Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on hedgehog signaling,” Clinical Cancer Research, vol. 18, no. 9, pp. 2429–2435, 2012.
  63. K. N. Sugahara, T. Teesalu, P. P. Karmali et al., “Tissue-penetrating delivery of compounds and nanoparticles into tumors,” Cancer Cell, vol. 16, no. 6, pp. 510–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. N. Sugahara, T. Teesalu, P. Prakash Karmali et al., “Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs,” Science, vol. 328, no. 5981, pp. 1031–1035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Garcia-Guzman, “Preclinical Development of iRGD for pancreatic cancer Grant 1R43CA162766-01,” Grant 1R43CA162766-01 from National Cancer Institute, 2011.
  66. J. Banchereau, F. Bazon, D. Blanchard et al., “The CD40 antigen and its ligand,” Annual Review of Immunology, vol. 12, pp. 881–922, 1994. View at Scopus
  67. L. Biancone, V. Cantaluppi, and G. Camussi, “CD40-CD154 interaction in experimental and human disease (review),” International Journal of Molecular Medicine, vol. 3, no. 4, pp. 343–353, 1999. View at Scopus
  68. E. Fonsatti, M. Maio, M. Altomonte, and P. Hersey, “Biology and clinical applications of CD40 in cancer treatment,” Seminars in Oncology, vol. 37, no. 5, pp. 517–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Shoji, M. Miyamoto, K. Ishikawa et al., “The CD40-CD154 interaction would correlate with proliferation and immune escape in pancreatic ductal adenocarcinoma,” Journal of Surgical Oncology, vol. 103, no. 3, pp. 230–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. T. Mees, W. A. Mardin, S. Sielker et al., “Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas,” Annals of Surgical Oncology, vol. 16, no. 8, pp. 2339–2350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Ottaiano, C. Pisano, A. De Chiara et al., “CD40 activation as potential tool in malignant neoplasms,” Tumori, vol. 88, no. 5, pp. 361–366, 2002. View at Scopus
  72. S. He, H. Zhao, M. Fei et al., “Expression of the co-signaling molecules CD40-CD40L and their growth inhibitory effect on pancreatic cancer in vitro,” Oncology Reports, vol. 28, no. 1, pp. 262–268, 2012. View at Publisher · View at Google Scholar
  73. G. L. Beatty, E. G. Chiorean, M. P. Fishman et al., “CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans,” Science, vol. 331, no. 6024, pp. 1612–1616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Gennari, G. B. Raffi, and E. Baldi, “Evaluation of a few indices of hepatic and renal function in a group of workers chronically exposed to anti parasitic agents,” Giornale di Clinica Medica, vol. 56, no. 11-12, pp. 423–430, 1975. View at Scopus
  75. Z. Vadasz, O. Kessler, G. Akiri et al., “Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2,” Journal of Hepatology, vol. 43, no. 3, pp. 499–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Reiser, R. J. McCormick, and R. B. Rucker, “Enzymatic and nonenzymatic cross-linking of collagen and elastin,” FASEB Journal, vol. 6, no. 7, pp. 2439–2449, 1992. View at Scopus
  77. J. T. Erler, K. L. Bennewith, T. R. Cox et al., “Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche,” Cancer Cell, vol. 15, no. 1, pp. 35–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. C. V. Hinton, S. Avraham, and H. K. Avraham, “Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain,” Clinical and Experimental Metastasis, vol. 27, no. 2, pp. 97–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Friedl and K. Wolf, “Tube travel: the role of proteases in individual and collective cancer cell invasion,” Cancer Research, vol. 68, no. 18, pp. 7247–7249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Offenberg, N. Brünner, F. Mansilla, F. Ørntoft Torben, and K. Birkenkamp-Demtroder, “TIMP-1 expression in human colorectal cancer is associated with TGF-B1, LOXL2, INHBA1, TNF-AIP6 and TIMP-2 transcript profiles,” Molecular Oncology, vol. 2, no. 3, pp. 233–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. V. Barry-Hamilton, R. Spangler, D. Marshall et al., “Allosteric inhibition of lysyl oxidase—like-2 impedes the development of a pathologic microenvironment,” Nature Medicine, vol. 16, no. 9, pp. 1009–1017, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. H. E. Barker, J. Chang, T. R. Cox et al., “LOXL2-mediated matrix remodeling in metastasis and mammary gland involution,” Cancer Research, vol. 71, no. 5, pp. 1561–1572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Rückert, P. Joensson, H. D. Saeger, R. Grützmann, and C. Pilarsky, “Functional analysis of LOXL2 in pancreatic carcinoma,” International Journal of Colorectal Disease, vol. 25, no. 3, pp. 303–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. H. M. Rodriguez, M. Vaysberg, A. Mikels et al., “Modulation of lysyl oxidase-like 2 enzymatic activity by an allosteric antibody inhibitor,” The Journal of Biological Chemistry, vol. 285, no. 27, pp. 20964–20974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Aghdassi, M. Sendler, A. Guenther et al., “Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer,” Gut, vol. 61, no. 3, pp. 439–448, 2012.
  86. N. Herranz, N. Dave, A. Millanes-Romero et al., “Lysyl Oxidase-like 2 Deaminates Lysine 4 in Histone H3,” Molecular Cell, vol. 46, no. 3, pp. 369–376, 2012.
  87. N. Cordes, J. Seidler, R. Durzok, H. Geinitz, and C. Brakebusch, “β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury,” Oncogene, vol. 25, no. 9, pp. 1378–1390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Erkan, J. Kleeff, A. Gorbachevski et al., “Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity,” Gastroenterology, vol. 132, no. 4, pp. 1447–1464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. C. C. Park, H. J. Zhang, E. S. Yao, C. J. Park, and M. J. Bissell, “β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts,” Cancer Research, vol. 68, no. 11, pp. 4398–4405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Cordes, S. Frick, T. B. Brunner et al., “Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1,” Oncogene, vol. 26, no. 48, pp. 6851–6862, 2007. View at Publisher · View at Google Scholar · View at Scopus