About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 841691, 9 pages
http://dx.doi.org/10.1155/2012/841691
Review Article

Swallowable Wireless Capsule Endoscopy: Progress and Technical Challenges

1Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education, Hangzhou 310032, China
2College of Science, Zhejiang University of Technology, Hangzhou 310032, China

Received 13 July 2011; Revised 19 September 2011; Accepted 10 October 2011

Academic Editor: Marco Pennazio

Copyright © 2012 Guobing Pan and Litong Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. McCaffrey, O. Chevalerias, C. O'Mathuna, and K. Twomey, “Swallowable-capsule technology,” IEEE Pervasive Computing, vol. 7, no. 1, pp. 23–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. S. Lewis, “Small intestinal bleeding,” Gastroenterology Clinics of North America, vol. 29, no. 1, pp. 67–95, 2000. View at Scopus
  3. G. R. Zuckerman, C. Prakash, M. P. Askin, and B. S. Lewis, “AGA technical review on the evaluation and management of occult and obscure gastrointestinal bleeding,” Gastroenterology, vol. 118, no. 1, pp. 201–221, 2000. View at Scopus
  4. D. M. Howarth, K. Tang, and W. Lees, “The clinical utility of nuclear medicine imaging for the detection of occult gastrointestinal haemorrhage,” Nuclear Medicine Communications, vol. 23, no. 6, pp. 591–594, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Eliakim, A. Suissa, K. Yassin, D. Katz, and D. Fischer, “Wireless capsule video endoscopy compared to barium follow-through and computerised tomography in patients with suspected Crohn's disease—final report,” Digestive and Liver Disease, vol. 36, no. 8, pp. 519–522, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature, vol. 405, no. 6785, pp. 417–418, 2000. View at Scopus
  7. G. D. Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy, vol. 52, no. 6, pp. 817–819, 2000. View at Scopus
  8. P. Swain, G. Iddan, G. Meron, and A. Glukhovsky, “Wireless capsule endoscopy of the small-bowel: development, testing and first human trials,” in Biomonitoring and Endoscopy Technologies, vol. 4158 of Proceedings of SPIE, pp. 19–23, Amsterdam, The Netherlands, July 2000. View at Publisher · View at Google Scholar
  9. R. S. MacKay and B. Jacobson, “Endoradiosonde,” Nature, vol. 179, no. 4572, pp. 1239–1240, 1957. View at Publisher · View at Google Scholar · View at Scopus
  10. V. K. Zworykin, “A ‘Radio Pill’,” Nature, vol. 179, no. 4566, p. 898, 1957.
  11. R. S. Mackay, “Radio telemetering from within the human body,” IRE Transactions on Medical Electronics, vol. 6, no. 2, pp. 100–105, 1959. View at Publisher · View at Google Scholar
  12. Z. Guan-Xiong, “Swallowable or implantable body temperature telemeter—body temperature radio pill,” in Proceedings of the 15th Annual Northeast Bioengineering Conference, pp. 165–166, Boston, Mass, USA, 1989.
  13. A. Uchiyama, “Endoradiosonde needs micro machine technology,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 31–37, Nagoya, Japan, 1995.
  14. N. D. Stephen and A. Barrie, Heidelberg pH Capsule Gastric Analysis, JBC Publications, Seattle, Wash, USA, 1992.
  15. C. Ruan, K. G. Ong, C. Mungle, M. Paulose, N. J. Nickl, and C. A. Grimes, “A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres,” Sensors and Actuators B, vol. 96, no. 1-2, pp. 61–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Pan, G. Yan, X. Qiu, and X. Song, “A novel JPEG-based wireless capsule endoscope,” Biomedical Instrumentation & Technology, vol. 44, no. 6, pp. 519–522, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Glukhovsky, “Wireless capsule endoscopy,” Sensor Review, vol. 23, no. 2, pp. 128–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. G. I. Co., “PillCam ESO 2,” Yoqneam, Israel, vol. 2007, 2007.
  19. G. I. Co., “The Third Generation PillCam SB Launched,” Yoqneam, Israel, vol. 2005, 2005.
  20. O. Co., Olympus Launches High-resolution Capsule Endoscope in Europe, 2008.
  21. Z. Liao, F. Li, and Z.-S. Li, “Clinical application of OMOM capsule endoscopy in China: a review of 1,068 cases,” Gastrointestinal Endoscopy, vol. 67, p. AB265, 2010. View at Publisher · View at Google Scholar
  22. F. Cavallaro, R. Bozzi, D. Cattaneo, et al., “Feasibility, safety and diagnostic yield of OMOM CE, a new capsule endoscopy system,” Digestive and Liver Disease, vol. 42, supplement 2, pp. S164–S165, 2010.
  23. S. Bang, J. Y. Park, S. Jeong et al., “First clinical trial of the "MiRo" capsule endoscope by using a novel transmission technology: electric-field propagation,” Gastrointestinal Endoscopy, vol. 69, no. 2, pp. 253–259, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Y. Park, H. M. Kim, Y. A. Choi et al., “Multicenter clinical experience of the MiRo capsule endoscope,” Gastrointestinal Endoscopy, vol. 69, p. AB194, 2009.
  25. R. S. Lab, The Next Generation Capsule Endoscope, vol. 2008, 2008.
  26. M. Mylonaki, A. Fritscher-Ravens, and P. Swain, “Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding,” Gut, vol. 52, no. 8, pp. 1122–1126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. K. R. Canlas, B. M. Dobozi, S. Lin et al., “Using capsule endoscopy to identify GI tract lesions in cirrhotic patients with portal hypertension and chronic anemia,” Journal of Clinical Gastroenterology, vol. 42, no. 7, pp. 844–848, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. G. C. Sturniolo, V. Di Leo, M. G. Vettorato et al., “Small bowel exploration by wireless capsule endoscopy: results from 314 procedures,” American Journal of Medicine, vol. 119, no. 4, pp. 341–347, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. N. Kameda, K. Higuchi, M. Shiba et al., “A prospective trial comparing wireless capsule endoscopy and double-balloon enteroscopy in patients with obscure gastrointestinal bleeding,” Gastrointestinal Endoscopy, vol. 63, pp. AB162–AB162, 2006..
  30. F. S. Chan and K. M. Chu, “Capsule endoscopy for gastrointestinal bleeding of obscure origin,” Asian Journal of Surgery, vol. 31, no. 2, pp. 96–99, 2008. View at Scopus
  31. G. Pan, G. Yan, W. Xin, and and J. Cheng, “A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment,” Measurement Science and Technology, vol. 22, pp. 1–9, 2011.
  32. D. Turgis and R. Puers, “Image compression in video radio transmission for capsule endoscopy,” Sensors and Actuators A, vol. 123-124, pp. 129–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Li, M. Zhang, Z. Wang, and A. Bermak, “Smart image sensor with integrated low complexity image processing for wireless endoscope capsules,” Tsinghua Science and Technology, vol. 14, no. 5, pp. 586–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Yamane, “The present and future state of nonpulsatile artificial heart technology,” Journal of Artificial Organs, vol. 5, no. 3, pp. 149–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 10, pp. 2109–2117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Transactions on Magnetics, vol. 28, no. 5, pp. 2406–2408, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Keller, C. Fibbe, F. Volke et al., “Remote magnetic control of a wireless capsule endoscope in the esophagus is safe and feasible: results of a randomized, clinical trial in healthy volunteers,” Gastrointestinal Endoscopy, vol. 72, no. 5, pp. 941–946, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. E. Morita, N. Ohtsuka, Y. Shindo et al., “In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video),” Gastrointestinal Endoscopy, vol. 72, no. 4, pp. 836–840, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. P. Swain, A. Toor, F. Volke et al., “Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos),” Gastrointestinal Endoscopy, vol. 71, no. 7, pp. 1290–1293, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. H. Miura, S. Arai, Y. Kakubari, F. Sato, H. Matsuki, and T. Sato, “Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3578–3580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Ryu, J. D. Kim, H. U. Chin, J. Kim, and S. Y. Song, “Three-dimensional power receiver for in vivo robotic capsules,” Medical and Biological Engineering and Computing, vol. 45, no. 10, pp. 997–1002, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Soma, D. C. Galbraith, and R. L. White, “Radio-frequency coils in implantable devices: misalignment analysis and design procedure,” IEEE Transactions on Biomedical Engineering, vol. 34, no. 4, pp. 276–282, 1987. View at Scopus
  43. S. Kopparthi and P. K. Ajmera, “Power delivery for remotely located microsystems,” in Proceedings of IEEE Region 5 Conference: Annual Technical and Leadership Workshop, pp. 31–39, April 2004.
  44. Y. U. Lee, J. D. Kim, M. Ryu, and J. Kim, “In vivo robotic capsules: determination of the number of turns of its power receiving coil,” Medical and Biological Engineering and Computing, vol. 44, no. 12, pp. 1121–1125, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. B. Lenaerts and R. Puers, “Inductive powering of a freely moving system,” Sensors and Actuators A, vol. 123-124, pp. 522–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Lenaerts and R. Puers, “An inductive power link for a wireless endoscope,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1390–1395, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. R. Carta, J. Thoné, and R. Puers, “A 3D ferrite coil receiver for wireless power supply of endoscopic capsules,” Procedia Chemistry, vol. 1, no. 1, pp. 477–480, 2009. View at Publisher · View at Google Scholar
  48. R. Carta, G. Tortora, J. Thoné et al., “Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 845–851, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. R. Carta, N. Pateromichelakis, J. Thoné, M. Sfakiotakis, D. P. Tsakiris, and R. Puers, “A wireless powering system for a vibratory-actuated endoscopic capsule,” Procedia Engineering, vol. 5, pp. 572–575, 2010. View at Publisher · View at Google Scholar
  50. R. Carta, J. Thoné, and R. Puers, “A wireless power supply system for robotic capsular endoscopes,” Sensors and Actuators A, vol. 162, no. 2, pp. 177–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Xin, G. Yan, and W. Wang, “Study of a wireless power transmission system for an active capsule endoscope,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 6, no. 1, pp. 113–122, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. M. Guan-ying, Y. Guo-zheng, and H. Xiu, “Study on wireless power transmission for gastrointestinal microsystems based on inductive coupling,” Chinese Journal of Biomedical Engineering, vol. 16, pp. 71–78, 2007.
  53. C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey,” Physics in Medicine and Biology, vol. 41, no. 11, pp. 2231–2249, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Dario, P. Ciarletta, A. Menciassim, and b. Kim, “Modelling and experimental validation of the locomotion of endoscopic robots in the colon,” in Proceedings of the International Symposium on Experimental Engineering (ISER '02), 2001.
  55. P. Dario, M. C. Carrozza, B. Allotta, and E. Guglielmelli, “Micromechatronics in medicine,” IEEE/ASME Transactions on Mechatronics, vol. 1, no. 2, pp. 137–148, 1996. View at Scopus
  56. P. Dario, M. C. Carrozza, L. Lencioni, B. Magnani, and S. D'Attanasio, “Micro robotic system for colonoscopy,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '97), pp. 1567–1572, April 1997.
  57. M. C. Carrozza, L. Lencioni, B. Magnani et al., “Microrobot for colonoscopy,” in Proceedings of the 7th International Symposium on Micro Machine and Human Science (MHS '96), pp. 223–228, October 1996.
  58. P. Dario, M. C. Carrozza, and A. Pietrabissa, “Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy,” Computer Aided Surgery, vol. 4, no. 1, pp. 1–14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Dario and A. Menciassi, “Robotics for surgery,” in Proceedings of the 2nd Joint Conference: Engineering in Medicine and Biology Society—Annual Fall Meeting of the Biomedical Engineering Society (EMBS-BMES '02), pp. 1813–1814, Houston, Tex, USA, 2002.
  60. P. Dario, C. Laschi, A. Menciassi, et al., “Design and development of a neurorobotic human-like guinea pig,” in Proceedings of the 2nd Joint Conference: Engineering in Medicine and Biology Society—Annual Fall Meeting of the Biomedical Engineering Society (EMBS-BMES '02), pp. 387–391, Houston, Tex, USA, 2002.
  61. W. Liu, A. Menciassi, S. Scapellato, P. Dario, and Y. Chen, “A biomimetic sensor for a crawling minirobot,” Robotics and Autonomous Systems, vol. 54, no. 7, pp. 513–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Menciassi, S. Gorini, G. Pernorio, W. Liu, F. Valvo, and P. Dario, “Design, fabrication and performances of a biomimetic robotic earthworm,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '04), pp. 274–278, August 2004.
  63. B. Kim, M. G. Lee, Y. P. Lee, Y. Kim, and G. Lee, “An earthworm-like micro robot using shape memory alloy actuator,” Sensors and Actuators A, vol. 125, no. 2, pp. 429–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Kim, S. Lee, J. H. Park, and J. O. Park, “Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs),” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 1, pp. 77–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. H. M. Kim, S. Yang, J. Kim et al., “Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos),” Gastrointestinal Endoscopy, vol. 72, no. 2, pp. 381–387, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. P. Hyunjun, P. Sungjin, Y. Euisung, B. Kim, P. Jongoh, and S. Park, “Paddling based microrobot for capsule endoscopes,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3377–3382, 2007.
  67. E. Buselli, V. Pensabene, P. Castrataro, P. Valdastri, A. Menciassi, and P. Dario, “Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy,” Measurement Science and Technology, vol. 21, no. 10, Article ID 105802, 2010. View at Publisher · View at Google Scholar
  68. B. Kim, S. Park, J. Chang Yeol, and Y. Seok-Jin, “An earthworm-like locomotive mechanism for capsule endoscopes,” in Proceedings of the Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '05), pp. 2997–3002, 2005.
  69. B. Kim, S. Park, and J. O. Park, “Microrobots for a capsule endoscope,” in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM '09), pp. 729–734, Singapore, July 2009. View at Publisher · View at Google Scholar
  70. B. Kim, S. Lee, J. H. Park, and J.-O. Park, “Inchworm-like microrobot for capsule endoscope,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '04), pp. 458–463, August 2004.
  71. K. Wang, G. Yan, G. Ma, and D. Ye, “An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment,” Annals of Biomedical Engineering, vol. 37, no. 1, pp. 210–221, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. X. Wang and M. Q. H. Meng, “An inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 1267–1272, Beijing, China, October 2006. View at Publisher · View at Google Scholar