About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 859697, 8 pages
http://dx.doi.org/10.1155/2012/859697
Review Article

Nutrition Therapy for Liver Diseases Based on the Status of Nutritional Intake

1Department of Health and Nutrition Sciences, Faculty of Health and Social Welfare Sciences, Nishikyushu University, Kanzaki 842-8585, Japan
2Clinical Research Center, Kyushu Medical Center, National Hospital Organization, Fukuoka 810-0065, Japan
3Department of Gastroenterology, Kyushu Medical Center, National Hospital Organization, Fukuoka 810-0065, Japan
4Health Care Center and Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
5Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

Received 3 August 2012; Accepted 20 October 2012

Academic Editor: Alessandro Laviano

Copyright © 2012 Kenichiro Yasutake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Assy, G. Nasser, I. Kamayse et al., “Soft drink consumation linked with fatty liver in the absence of traditional risk factors,” Canadian Journal of Gastroenterology, vol. 22, no. 10, pp. 811–816, 2008. View at Scopus
  2. X. Ouyang, P. Cirillo, Y. Sautin et al., “Fructose consumption as a risk factor for non-alcoholic fatty liver disease,” Journal of Hepatology, vol. 48, no. 6, pp. 993–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Abid, O. Taha, W. Nseir, R. Farah, M. Grosovski, and N. Assy, “Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome,” Journal of Hepatology, vol. 51, no. 5, pp. 918–924, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Toshimitsu, B. Matsuura, I. Ohkubo et al., “Dietary habits and nutrient intake in non-alcoholic steatohepatitis,” Nutrition, vol. 23, no. 1, pp. 46–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Yamazaki, A. Nakamori, E. Sasaki, S. Wada, and O. Ezaki, “Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddY mice,” Hepatology, vol. 46, no. 6, pp. 1779–1790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Solga, A. R. Alkhuraishe, J. M. Clark et al., “Dietary composition and nonalcoholic fatty liver disease,” Digestive Diseases and Sciences, vol. 49, no. 10, pp. 1578–1583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Musso, R. Gambino, F. De Michieli et al., “Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis,” Hepatology, vol. 37, no. 4, pp. 909–916, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Ha and C. Chae, “Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet-induced obesity,” Experimental Animals, vol. 59, no. 5, pp. 595–604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Yasutake, M. Nakamuta, Y. Shima et al., “Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol,” Scandinavian Journal of Gastroenterology, vol. 44, no. 4, pp. 471–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kainuma, M. Fujimoto, N. Sekiya et al., “Cholesterol-fed rabbit as a unique model of nonalcoholic, nonobese, non-insulin-resistant fatty liver disease with characteristic fibrosis,” Journal of Gastroenterology, vol. 41, no. 10, pp. 971–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Matsuzawa, T. Takamura, S. Kurita et al., “Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet,” Hepatology, vol. 46, no. 5, pp. 1392–1403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Wouters, P. J. van Gorp, V. Bieghs et al., “Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis,” Hepatology, vol. 48, no. 2, pp. 474–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Higuchi, M. Kato, Y. Shundo et al., “Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease,” Hepatology Research, vol. 38, no. 11, pp. 1122–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Nakamuta, T. Fujino, R. Yada et al., “Impact of cholesterol metabolism and the LXRα-SREBP-1c pathway on nonalcoholic fatty liver disease,” International Journal of Molecular Medicine, vol. 23, no. 5, pp. 603–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Dixon, P. S. Bhathal, N. R. Hughes, and P. E. O'Brien, “Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss,” Hepatology, vol. 39, no. 6, pp. 1647–1654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Elias, E. R. Parise, L. D. Carvalho, D. Szejnfeld, and J. P. Netto, “Effect of 6-month nutritional intervention on non-alcoholic fatty liver disease,” Nutrition, vol. 26, no. 11-12, pp. 1094–1099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Capanni, F. Calella, M. R. Biagini et al., “Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 8, pp. 1143–1151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Hasegawa, M. Yoneda, K. Nakamura, I. Makino, and A. Terano, “Plasma transforming growth factor-β1 level and efficacy of α-tocopherol in patients with non-alcoholic steatohepatitis: a pilot study,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 10, pp. 1667–1672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. I. Kojima, N. Watanabe, M. Numata, T. Ogawa, and S. Matsuzaki, “Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background,” Journal of Gastroenterology, vol. 38, no. 10, pp. 954–961, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Nonomura, Y. Enomoto, M. Takeda et al., “Clinical and pathological features of non-alcoholic steatohepatitis,” Hepatology Research, vol. 33, no. 2, pp. 116–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Enjoji, K. Machida, M. Kohjima et al., “NPC1L1 inhibitor ezetimibe is a reliable therapeutic agent for non-obese patients with nonalcoholic fatty liver disease,” Lipids in Health and Disease, vol. 9, p. 29, 2010. View at Scopus
  22. J. P. Davies, C. Scott, K. Oishi, A. Liapis, and Y. A. Ioannou, “Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia,” Journal of Biological Chemistry, vol. 280, no. 13, pp. 12710–12720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Deushi, M. Nomura, A. Kawakami et al., “Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome,” FEBS Letters, vol. 581, no. 29, pp. 5664–5670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Ghafoorunissa, A. Ibrahim, L. Rajkumar, and V. Acharya, “Dietary (n-3) long chain polyunsaturated fatty acids prevent sucrose-induced insulin resistance in rats,” Journal of Nutrition, vol. 135, no. 11, pp. 2634–2638, 2005. View at Scopus
  25. M. Teran-Garcia, A. W. Adamson, G. Yu et al., “Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c,” Biochemical Journal, vol. 402, no. 3, pp. 591–600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Patek and J. Post, “Treatment of cirrhosis of the liver by a nutritious diet and supplements rich in vitamin B complex,” Journal of Clinical Investigation, vol. 20, no. 5, pp. 481–505, 1941.
  27. M. Iwasa, K. Iwata, M. Kaito et al., “Efficacy of long-term dietary restriction of total calories, fat, iron, and protein in patients with chronic hepatitis C virus,” Nutrition, vol. 20, no. 4, pp. 368–371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Hamer, “The impact of combination therapy with peginterferon alfa-2a and ribavirin on the energy intake and body weight of adult hepatitis C patients,” Journal of Human Nutrition and Dietetics, vol. 21, no. 5, pp. 486–493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Fioravante, S. M. Alegre, D. M. Marin, et al., “Weight loss and resting energy expenditure in patients with chronic hepatitis C before and during standard treatment,” Nutrition, vol. 28, no. 6, pp. 630–634, 2012.
  30. M. W. Fried, “Side effects of therapy of hepatitis C and their management,” Hepatology, vol. 36, no. 5, supplement 1, pp. S237–S244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. P. Manns, J. G. McHutchison, S. C. Gordon et al., “Peginterferon alfa-2b plus ribavirin compared with interferonalfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. W. Fried, M. L. Shiffman, K. R. Reddy et al., “Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection,” The New England Journal of Medicine, vol. 347, no. 13, pp. 975–982, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Hayashi, T. Takikawa, N. Nishimura, M. Yano, T. Isomura, and N. Sakamoto, “Improvement of serum aminotransferase levels after phlebotomy in patients with chronic active hepatitis C and excess hepatic iron,” American Journal of Gastroenterology, vol. 89, no. 7, pp. 986–988, 1994. View at Scopus
  34. M. Iwasa, M. Kaito, J. Ikoma et al., “Dietary iron restriction improves aminotransferase levels in chronic hepatitis C patients,” Hepato-Gastroenterology, vol. 49, no. 44, pp. 529–531, 2002. View at Scopus
  35. M. Yano, H. Hayashi, S. Wakusawa et al., “Long term effects of phlebotomy on biochemical and histological parameters of chronic hepatitis C,” American Journal of Gastroenterology, vol. 97, no. 1, pp. 133–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Shintani, H. Fujie, H. Miyoshi et al., “Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance,” Gastroenterology, vol. 126, no. 3, pp. 840–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Bach, S. N. Thung, and F. Schaffner, “The histological features of chronic hepatitis C and autoimmune chronic hepatitis: a comparative analysis,” Hepatology, vol. 15, no. 4, pp. 572–577, 1992. View at Scopus
  38. J. H. Lefkowitch, E. R. Schiff, G. L. Davis et al., “Pathological diagnosis of chronic hepatitis C: a multicenter comparative study with chronic hepatitis B,” Gastroenterology, vol. 104, no. 2, pp. 595–603, 1993. View at Scopus
  39. M. Romero-Gómez, M. Del Mar Viloria, R. J. Andrade et al., “Insulin resistance impairs sustained response rate to peginterferon plus ribavirin in chronic hepatitis C patients,” Gastroenterology, vol. 128, no. 3, pp. 636–641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Poynard, V. Ratziu, J. McHutchison et al., “Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C,” Hepatology, vol. 38, no. 1, pp. 75–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Hui, A. Sud, G. C. Farrell et al., “Insulin resistance is associated with chronic hepatitis C and virus infection fibrosis progression,” Gastroenterology, vol. 125, no. 6, pp. 1695–1704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. L. F. Hourigan, G. A. Macdonald, D. Purdie et al., “Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis,” Hepatology, vol. 29, no. 4, pp. 1215–1219, 1999. View at Scopus
  43. M. Eslam, R. Aparcero, T. Kawaguchi et al., “Meta-analysis: Insulin resistance and sustained virological response in hepatitis C,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 3, pp. 297–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Deltenre, A. Louvet, M. Lemoine, et al., “Impact of insulin resistance on sustained response in HCV patients treated with pegylated interferon and ribavirin: a meta-analysis,” Journal of Hepatology, vol. 55, no. 6, pp. 1187–1194, 2011.
  45. M. Yano, M. Ikeda, K. I. Abe et al., “Comprehensive analysis of the effects of ordinary nutrients on hepatitis C virus RNA replication in cell culture,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 6, pp. 2016–2027, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Abu-Mouch, Z. Fireman, J. Jarchovsky, A. R. Zeina, and N. Assy, “Vitamin D supplementation improves sustained virologic response in chronic hepatitis C, (genotype 1)-naive patients,” World Journal of Gastroenterology, vol. 17, no. 47, pp. 5184–5190, 2011.
  47. K. Yasutake, M. Ichinose, M. Bekki, et al., “Significance of dietary intake during combined peg-interferon plus ribavirin therapy for chronic hepatitis C: relationship between polyunsaturated fatty acid and early virologic response,” Journal of the Japan Dietetic Association, vol. 55, no. 1, pp. 32–39, 2012 (Japanese).
  48. G. Z. Leu, T. Y. Lin, and J. T. A. Hsu, “Anti-HCV activities of selective polyunsaturated fatty acids,” Biochemical and Biophysical Research Communications, vol. 318, no. 1, pp. 275–280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. B. Kapadia and F. V. Chisari, “Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2561–2566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Vitaglione, V. Fogliano, S. Stingo, L. Scalfi, N. Capraso, and F. Morisco, “Development of a tomato-based food for special medical purposes as therapy adjuvant for patients with,” European Journal of Clinical Nutrition, vol. 61, no. 7, pp. 906–915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. L. B. Seeff, T. M. Curto, G. Szabo et al., “Herbal product use by persons enrolled in the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial,” Hepatology, vol. 47, no. 2, pp. 605–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. H. L. Bonkovsky, B. F. Banner, and A. L. Rothman, “Iron and chronic viral hepatitis,” Hepatology, vol. 25, no. 3, pp. 759–768, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. A. M. Di Bisceglie, C. A. Axiotis, J. H. Hoofnagle, and B. R. Bacon, “Measurements of iron status in patients with chronic hepatitis,” Gastroenterology, vol. 102, no. 6, pp. 2108–2113, 1992. View at Scopus
  54. A. Piperno, R. D'Alba, S. Fargion et al., “Liver iron concentration in chronic viral hepatitis: a study of 98 patients,” European Journal of Gastroenterology and Hepatology, vol. 7, no. 12, pp. 1203–1208, 1995. View at Scopus
  55. S. Haque, B. Chandra, M. A. Gerber, and A. S. F. Lok, “Iron overload in patients with chronic hepatitis C: a clinicopathologic study,” Human Pathology, vol. 27, no. 12, pp. 1277–1281, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. A. M. Di Bisceglie, H. L. Bonkovsky, S. Chopra et al., “Iron reduction as an adjuvant to interferon therapy in patients with chronic hepatitis C who have previously not responded to interferon: a multicenter, prospective, randomized, controlled trial,” Hepatology, vol. 32, no. 1, pp. 135–138, 2000. View at Scopus
  57. A. Erhardt, A. Maschner-Olberg, C. Mellenthin et al., “HFE mutations and chronic hepatitis C: H63D and C282Y heterozygosity are independent risk factors for liver fibrosis and cirrhosis,” Journal of Hepatology, vol. 38, no. 3, pp. 335–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. H. L. Bonkovsky, N. Troy, K. McNeal et al., “Iron and HFE or TfR1 mutations as comorbid factors for development and progression of chronic hepatitis C,” Journal of Hepatology, vol. 37, no. 6, pp. 848–854, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. J. Fontana, J. Israel, P. LeClair et al., “Iron reduction before and during interferon therapy of chronic hepatitis C: results of a multicenter, randomized, controlled trial,” Hepatology, vol. 31, no. 3, pp. 730–736, 2000. View at Scopus
  60. J. Kato, K. Miyanishi, M. Kobune et al., “Long-term phlebotomy with low-iron diet therapy lowers risk of development of hepatocellular carcinoma from chronic hepatitis C,” Journal of Gastroenterology, vol. 42, no. 10, pp. 830–836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. C. L. Mendenhall, T. E. Moritz, G. A. Roselle et al., “A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs cooperative study,” Hepatology, vol. 17, no. 4, pp. 564–576, 1993. View at Scopus
  62. R. A. Richardson, H. I. Davidson, A. Hinds, S. Cowan, P. Rae, and O. J. Garden, “Influence of the metabolic sequelae of liver cirrhosis on nutritional intake,” American Journal of Clinical Nutrition, vol. 69, no. 2, pp. 331–337, 1999. View at Scopus
  63. B. Campillo, J. P. Richardet, E. Scherman, and P. N. Bories, “Evaluation of nutritional practice in hospitalized cirrhotic patients: results of a prospective study,” Nutrition, vol. 19, no. 6, pp. 515–521, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Merli, “Nutritional status in cirrhosis,” Journal of Hepatology, vol. 21, no. 3, pp. 317–325, 1994. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Tajika, M. Kato, H. Mohri et al., “Prognostic value of energy metabolism in patients with viral liver cirrhosis,” Nutrition, vol. 18, no. 3, pp. 229–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. O. E. Owen, F. A. Reichle, M. A. Mozzoli, et al., “Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis,” Journal of Clinical Investigation, vol. 68, no. 1, pp. 240–252, 1981. View at Scopus
  67. K. Nielsen, J. Kondrup, L. Martinsen, B. Stilling, and B. Wikman, “Nutritional assessment and adequacy of dietary intake in hospitalized patients with alcoholic liver cirrhosis,” British Journal of Nutrition, vol. 69, no. 3, pp. 665–679, 1993. View at Scopus
  68. B. Campillo, P. N. Bories, M. Leluan, B. Pornin, M. Devanlay, and P. Fouet, “Short-term changes in energy metabolism after 1 month of a regular oral diet in severely malnourished cirrhotic patients,” Metabolism: Clinical and Experimental, vol. 44, no. 6, pp. 765–770, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Muto, S. Sato, A. Watanabe et al., “Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis,” Hepatology Research, vol. 35, no. 3, pp. 204–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Yasutake, M. Bekki, M. Ichinose, et al., “Assessing current nutritional status of patients with HCV-related liver cirrhosis in the compensated stage,” Asia Pacific Journal of Clinical Nutrition, vol. 21, no. 3, pp. 400–405, 2012.
  71. M. Plauth, E. Cabré, O. Riggio et al., “ESPEN guidelines on enteral nutrition: liver disease,” Clinical Nutrition, vol. 25, no. 2, pp. 285–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Kato, Y. Miwa, M. Tajika, T. Hiraoka, Y. Muto, and H. Moriwaki, “Preferential use of branched-chain amino acids as an energy substrate in patients with liver cirrhosis,” Internal Medicine, vol. 37, no. 5, pp. 429–434, 1998. View at Scopus
  73. M. Shiraki, Y. Shimomura, Y. Miwa et al., “Activation of hepatic branched-chain α-keto acid dehydrogenase complex by tumor necrosis factor-α in rats,” Biochemical and Biophysical Research Communications, vol. 328, no. 4, pp. 973–978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. G. R. Swart, M. C. Zillikens, J. K. Van Vuure, and J. W. O. Van den Berg, “Effect of a late evening meal on nitrogen balance in patients with cirrhosis of the liver,” British Medical Journal, vol. 299, no. 6709, pp. 1202–1203, 1989. View at Scopus
  75. M. C. Zillikens, J. W. O. Van Den Berg, J. L. D. Wattimena, T. Rietveld, and G. R. Swart, “Nocturnal oral glucose supplementation. The effects on protein metabolism in cirrhotic patients and in healthy controls,” Journal of Hepatology, vol. 17, no. 3, pp. 377–383, 1993. View at Scopus
  76. M. Yamauchi, K. Takeda, K. Sakamoto, M. Ohata, and G. Toda, “Effect of oral branched chain amino acid supplementation in the late evening on the nutritional state of patients with liver cirrhosis,” Hepatology Research, vol. 21, no. 3, pp. 199–204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Tsuchiya, I. Sakaida, M. Okamoto, and K. Okita, “The effect of a late evening snack in patients with liver cirrhosis,” Hepatology Research, vol. 31, no. 2, pp. 95–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Nakaya, K. Okita, K. Suzuki et al., “BCAA-enriched snack improves nutritional state of cirrhosis,” Nutrition, vol. 23, no. 2, pp. 113–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Aoyama, M. Tsuchiya, K. Mori et al., “Effect of a late evening snack on outpatients with liver cirrhosis,” Hepatology Research, vol. 37, no. 8, pp. 608–614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. W. K. Chang, Y. C. Chao, H. S. Tang, H. F. Lang, and C. T. Hsu, “Effects of extra-carbohydrate supplementation in the late evening on energy expenditure and substrate oxidation in patients with liver cirrhosis,” Journal of Parenteral and Enteral Nutrition, vol. 21, no. 2, pp. 96–99, 1997. View at Scopus
  81. H. Yamanaka-Okumura, T. Nakamura, H. Takeuchi et al., “Effect of late evening snack with rice ball on energy metabolism in liver cirrhosis,” European Journal of Clinical Nutrition, vol. 60, no. 9, pp. 1067–1072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Miwa, M. Shiraki, M. Kato et al., “Improvement of fuel metabolism by nocturnal energy supplementation in patients with liver cirrhosis,” Hepatology Research, vol. 18, no. 3, pp. 184–189, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Yatsuhashi, Y. Ohnishi, S. Nakayama, et al., “Anti-hypoalbuminemic effect of branched-chain amino acid granules in patients with liver cirrhosis is independent of dietary energy and protein intake,” Hepatology Research, vol. 41, no. 11, pp. 1027–1035, 2011.
  84. G. Marchesini, G. Bianchi, M. Merli et al., “Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial,” Gastroenterology, vol. 124, no. 7, pp. 1792–1801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. R. T. P. Poon, W. C. Yu, S. T. Fan, and J. Wong, “Long-term oral branched chain amino acids in patients undergoing chemoembolization for hepatocellular carcinoma: a randomized trial,” Alimentary Pharmacology and Therapeutics, vol. 19, no. 7, pp. 779–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Kato and K. Suzuki, “How to select BCAA preparations,” Hepatology Research, vol. 30, pp. S30–S35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Imano, T. Kanda, Y. Nakatani et al., “Impaired splanchnic and peripheral glucose uptake in liver cirrhosis,” Journal of Hepatology, vol. 31, no. 3, pp. 469–473, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. A. S. Petrides, T. Stanley, D. E. Matthews, C. Vogt, A. J. Bush, and H. Lambeth, “Insulin resistance in cirrhosis: prolonged reduction of hyperinsulinemia normalizes insulin sensitivity,” Hepatology, vol. 28, no. 1, pp. 141–149, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Barkoukis, K. M. Fiedler, and E. Lerner, “A combined high-fiber, low-glycemic index diet normalizes glucose tolerance and reduces hyperglycemia and hyperinsulinemia in adults with hepatic cirrhosis,” Journal of the American Dietetic Association, vol. 102, no. 10, pp. 1503–1507, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. D. J. A. Jenkins, N. Shapira, G. Greenberg et al., “Low glycemic index foods and reduced glucose, amino acid, and endocrine responses in cirrhosis,” American Journal of Gastroenterology, vol. 84, no. 7, pp. 732–739, 1989. View at Scopus
  91. S. Gentile, S. Turco, G. Guarino et al., “Effect of treatment with acarbose and insulin in patients with non-insulin-dependent diabetes mellitus associated with non-alcoholic liver cirrhosis,” Diabetes, Obesity and Metabolism, vol. 3, no. 1, pp. 33–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. M. C. Zillikens, G. R. Swart, J. W. O. Van den Berg, and J. H. P. Wilson, “Effects of the glucosidase inhibitor acarbose in patients with liver cirrhosis,” Alimentary Pharmacology and Therapeutics, vol. 3, no. 5, pp. 453–459, 1989. View at Scopus
  93. G. Marchesini, E. Bugianesi, M. Ronchi, R. Flamia, K. Thomaseth, and G. Pacini, “Zinc supplementation improves glucose disposal in patients with cirrhosis,” Metabolism: Clinical and Experimental, vol. 47, no. 7, pp. 792–798, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Córdoba, J. López-Hellín, M. Planas et al., “Normal protein diet for episodic hepatic encephalopathy: results of a randomized study,” Journal of Hepatology, vol. 41, no. 1, pp. 38–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Sharma, B. C. Sharma, V. Puri, and S. K. Sarin, “An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy,” European Journal of Gastroenterology and Hepatology, vol. 20, no. 6, pp. 506–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Reding, J. Duchateau, and C. Bataille, “Oral zinc supplementation improves hepatic encephalopathy. Results of a randomised controlled trial,” Lancet, vol. 2, no. 8401, pp. 493–495, 1984. View at Scopus
  97. Y. Takuma, K. Nousot, Y. Makino, M. Hayashi, and H. Takahashi, “Clinical trial: oral zinc in hepatic encephalopathy,” Alimentary Pharmacology and Therapeutics, vol. 32, no. 9, pp. 1080–1090, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Nishitani, K. Takehana, S. Fujitani, and I. Sonaka, “Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis,” American Journal of Physiology, vol. 288, no. 6, pp. G1292–G1300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Fukushima, Y. Miwa, M. Shiraki et al., “Oral branched-chain amino acid supplementation improves the oxidized/ reduced albumin ratio in patients with liver cirrhosis,” Hepatology Research, vol. 37, no. 9, pp. 765–770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Ohno, Y. Tanaka, F. Sugauchi et al., “Suppressive effect of oral administration of branched-chain amino acid granules on oxidative stress and inflammation in HCV-positive patients with liver cirrhosis,” Hepatology Research, vol. 38, no. 7, pp. 683–688, 2008. View at Publisher · View at Google Scholar · View at Scopus