About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 872716, 16 pages
http://dx.doi.org/10.1155/2012/872716
Review Article

Probiotics, Prebiotics, and Synbiotics: Gut and Beyond

Kibow Biotech Inc., Newtown Business Center, 4781 West Chester Pike, Newtown Square, PA 19073, USA

Received 16 March 2012; Accepted 20 July 2012

Academic Editor: Maurizio Gabrielli

Copyright © 2012 Usha Vyas and Natarajan Ranganathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Kunz, S. Kuntz, and S. Rudloff, “Intestinal flora,” Advances in Experimental Medicine and Biology, vol. 639, pp. 67–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Morelli, “Postnatal development of intestinal microflora as influenced by infant nutrition,” Journal of Nutrition, vol. 138, supplement 9, pp. S1791–S1795, 2008. View at Scopus
  3. A. S. Neish, “Microbes in gastrointestinal health and disease,” Gastroenterology, vol. 136, no. 1, pp. 65–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. Savage, “Associations of indigenous microorganisms with gastrointestinal mucosal epithelia,” American Journal of Clinical Nutrition, vol. 23, no. 11, pp. 1495–1501, 1970. View at Scopus
  6. W. B. Whitman, D. C. Coleman, and W. J. Wiebe, “Prokaryotes: the unseen majority,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6578–6583, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Chiller, B. A. Selkin, and G. J. Murakawa, “Skin microflora and bacterial infections of the skin,” Journal of Investigative Dermatology Symposium Proceedings, vol. 6, no. 3, pp. 170–174, 2001. View at Scopus
  8. M. W. Hull and A. W. Chow, “Indigenous microflora and innate immunity of the head and neck,” Infectious Disease Clinics of North America, vol. 21, no. 2, pp. 265–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Verstraelen, “Cutting edge: the vaginal microflora and bacterial vaginosis,” Verhandelingen, vol. 70, no. 3, pp. 147–174, 2008. View at Scopus
  10. N. T. Williams, “Probiotics,” American Journal of Health-System Pharmacy, vol. 67, no. 6, pp. 449–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. Dominguez-Bello, E. K. Costello, M. Contreras et al., “Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 11971–11975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. G. Zoetendal, A. D. L. Akkermans, and W. M. De Vos, “Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria,” Applied and Environmental Microbiology, vol. 64, no. 10, pp. 3854–3859, 1998. View at Scopus
  13. D. Mariat, O. Firmesse, F. Levenez et al., “The firmicutes/bacteroidetes ratio of the human microbiota changes with age,” BMC Microbiology, vol. 9, article 123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Kleessen and M. Blaut, “Modulation of gut mucosal biofilms,” British Journal of Nutrition, vol. 93, pp. S35–S40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R. J. Brummer, “Review article: the role of butyrate on colonic function,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 2, pp. 104–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Salminen, C. Bouley, M. C. Boutron-Ruault et al., “Functional food science and gastrointestinal physiology and function,” British Journal of Nutrition, vol. 80, no. 1, pp. S147–S171, 1998. View at Scopus
  17. T. S. Stappenbeck, L. V. Hooper, and J. I. Gordon, “Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15451–15455, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels, “Role of bile acids and bile acid receptors in metabolic regulation,” Physiological Reviews, vol. 89, no. 1, pp. 147–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. W. Wong, R. de Souza, C. W. C. Kendall, A. Emam, and D. J. A. Jenkins, “Colonic health: fermentation and short chain fatty acids,” Journal of Clinical Gastroenterology, vol. 40, no. 3, pp. 235–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Tlaskova-Hogenova, R. Stepankova, T. Hudcovic, et al., “Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases,” Immunology Letters, vol. 93, pp. 97–108, 2004.
  21. J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nature Reviews Immunology, vol. 9, no. 5, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Haverson, Z. Rehakova, J. Sinkora, L. Sver, and M. Bailey, “Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: a study in germ-free pigs,” Veterinary Immunology and Immunopathology, vol. 119, no. 3-4, pp. 243–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Hapfelmeier, M. A. E. Lawson, E. Slack et al., “Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses,” Science, vol. 328, no. 5986, pp. 1705–1709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Atarashi, T. Tanoue, T. Shima et al., “Induction of colonic regulatory T cells by indigenous Clostridium species,” Science, vol. 331, no. 6015, pp. 337–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Mazmanian, H. L. Cui, A. O. Tzianabos, and D. L. Kasper, “An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system,” Cell, vol. 122, no. 1, pp. 107–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. I. I. Ivanov, K. Atarashi, N. Manel et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Lührs, T. Gerke, J. G. Müller et al., “Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis,” Scandinavian Journal of Gastroenterology, vol. 37, no. 4, pp. 458–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. K. M. Maslowski, A. T. Vieira, A. Ng et al., “Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43,” Nature, vol. 461, no. 7268, pp. 1282–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. U. G. Strauch, F. Obermeier, N. Grunwald et al., “Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis,” Gut, vol. 54, no. 11, pp. 1546–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Honda and K. Takeda, “Regulatory mechanisms of immune responses to intestinal bacteria,” Mucosal Immunology, vol. 2, no. 3, pp. 187–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. B. Sartor, “Microbial influences in inflammatory bowel diseases,” Gastroenterology, vol. 134, no. 2, pp. 577–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. B. J. Lee and Y.-T. Bak, “Irritable bowel syndrome, gut microbiota and probiotics,” Journal of Neurogastroenterology and Motility, vol. 17, no. 3, pp. 252–256, 2011.
  33. U. Hofer and R. F. Speck, “Disturbance of the gut-associated lymphoid tissue is associated with disease progression in chronic HIV infection,” Seminars in Immunopathology, vol. 31, no. 2, pp. 257–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. H. Liu, X. Q. Yang, C. H. Liu, Y. He, and L. J. Wang, “Allergic airway response associated with the intestinal microflora disruption induced by antibiotic therapy,” Zhonghua Er Ke Za Zhi, vol. 45, no. 6, pp. 450–454, 2007. View at Scopus
  35. J. Penders, E. E. Stobberingh, P. A. V. D. Brandt, and C. Thijs, “The role of the intestinal microbiota in the development of atopic disorders,” Allergy, vol. 62, no. 11, pp. 1223–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. L. Verhulst, C. Vael, C. Beunckens, V. Nelen, H. Goossens, and K. Desager, “A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life,” Journal of Asthma, vol. 45, no. 9, pp. 828–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Food and Agriculture Organization and World Health Organization, Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, 2001.
  38. G. R. Gibson, K. P. Scott, R. A. Rastall, et al., “Dietary prebiotics: current status and new definition,” Food Science and Technology Bulletin, vol. 7, no. 1, pp. 1–19, 2010.
  39. World Gastroenterology Organization Global Guidelines, October 2011.
  40. P. D. Cani and N. M. Delzenne, “The role of the gut microbiota in energy metabolism and metabolic disease,” Current Pharmaceutical Design, vol. 15, no. 13, pp. 1546–1558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. P. D. Cani and N. M. Delzenne, “Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota,” Current Opinion in Pharmacology, vol. 9, no. 6, pp. 737–743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Larsen, F. K. Vogensen, F. W. J. Van Den Berg et al., “Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults,” PLoS ONE, vol. 5, no. 2, Article ID e9085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. P. Furet, L. C. Kong, J. Tap et al., “Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers,” Diabetes, vol. 59, no. 12, pp. 3049–3057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. E. Ley, “Obesity and the human microbiome,” Current Opinion in Gastroenterology, vol. 26, no. 1, pp. 5–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Schwiertz, D. Taras, K. Schäfer et al., “Microbiota and SCFA in lean and overweight healthy subjects,” Obesity, vol. 18, no. 1, pp. 190–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Wu, C. Ma, L. Han et al., “Molecular characterisation of the faecal microbiota in patients with type II diabetes,” Current Microbiology, vol. 61, no. 1, pp. 69–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. M. Dewulf, P. D. Cani, A. M. Neyrinck et al., “Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice,” Journal of Nutritional Biochemistry, vol. 22, no. 8, pp. 712–722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. P. D. Cani, A. M. Neyrinck, F. Fava et al., “Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia,” Diabetologia, vol. 50, no. 11, pp. 2374–2383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. P. D. Cani, S. Possemiers, T. Van De Wiele et al., “Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability,” Gut, vol. 58, no. 8, pp. 1091–1103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Aronsson, Y. Huang, P. Parini et al., “Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4),” PLoS ONE, vol. 5, no. 9, Article ID e13087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. S. Andreasen, N. Larsen, T. Pedersen-Skovsgaard et al., “Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects,” British Journal of Nutrition, vol. 104, no. 12, pp. 1831–1838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Kadooka, M. Sato, K. Imaizumi et al., “Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial,” European Journal of Clinical Nutrition, vol. 64, no. 6, pp. 636–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. X. Lu, K. Z. Walker, J. G. Muir, and K. O'Dea, “Arabinoxylan fibre improves metabolic control in people with type II diabetes,” European Journal of Clinical Nutrition, vol. 58, no. 4, pp. 621–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. A. L. Garcia, J. Steiniger, S. C. Reich et al., “Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance,” Hormone and Metabolic Research, vol. 38, no. 11, pp. 761–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. L. Garcia, B. Otto, S. C. Reich et al., “Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance,” European Journal of Clinical Nutrition, vol. 61, no. 3, pp. 334–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. Parnell and R. A. Reimer, “Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults,” American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1751–1759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Luo, M. Van Yperselle, S. W. Rizkalla, F. Rossi, F. R. Bornet, and G. Slama, “Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics,” Journal of Nutrition, vol. 130, no. 6, pp. 1572–1577, 2000. View at Scopus
  58. C. A. Daubioul, Y. Horsmans, P. Lambert, E. Danse, and N. M. Delzenne, “Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study,” European Journal of Clinical Nutrition, vol. 59, no. 5, pp. 723–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Musso, R. Gambino, and M. Cassader, “Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes,” Annual Review of Medicine, vol. 62, pp. 361–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Prussin and D. D. Metcalfe, “IgE, mast cells, basophils, and eosinophils,” Journal of Allergy and Clinical Immunology, vol. 111, supplement 2, pp. S486–S494, 2003. View at Scopus
  61. W. Cookson, “Genetics and genomics of asthma and allergic diseases,” Immunological Reviews, vol. 190, pp. 195–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. J. W. Steinke, L. Borish, and L. J. Rosenwasser, “Genetics of hypersensitivity,” Journal of Allergy and Clinical Immunology, vol. 111, supplement 2, pp. S495–S501, 2003. View at Scopus
  63. F. S. Larsen and J. M. Hanifin, “Epidemiology of atopic dermatitis,” Immunology and Allergy Clinics of North America, vol. 22, no. 1, pp. 1–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Björkstén, P. Naaber, E. Sepp, and M. Mikelsaar, “The intestinal microflora in allergic Estonian and Swedish 2-year-old children,” Clinical and Experimental Allergy, vol. 29, no. 3, pp. 342–346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Sepp, K. Julge, M. Vasar, P. Naaber, B. Björksten, and M. Mikelsaar, “Intestinal microflora of Estonian and Swedish infants,” Acta Paediatrica, vol. 86, no. 9, pp. 956–961, 1997. View at Scopus
  66. M. Kalliomäki, S. Salminen, H. Arvilommi, P. Kero, P. Koskinen, and E. Isolauri, “Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial,” The Lancet, vol. 357, no. 9262, pp. 1076–1079, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Majamaa and E. Isolauri, “Probiotics: a novel approach in the management of food allergy,” Journal of Allergy and Clinical Immunology, vol. 99, no. 2, pp. 179–185, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Rosenfeldt, E. Benfeldt, S. D. Nielsen et al., “Effect of probiotic Lactobacillus strains in children with atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 111, no. 2, pp. 389–395, 2003. View at Scopus
  69. S. Weston, A. Halbert, P. Richmond, and S. L. Prescott, “Effects of probiotics on atopic dermatitis: a randomised controlled trial,” Archives of Disease in Childhood, vol. 90, no. 9, pp. 892–897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Wickens, P. N. Black, T. V. Stanley et al., “A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo-controlled trial,” Journal of Allergy and Clinical Immunology, vol. 122, no. 4, pp. 788–794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Niers, R. Martín, G. Rijkers et al., “The effects of selected probiotic strains on the development of eczema (the PandA study),” Allergy, vol. 64, no. 9, pp. 1349–1358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Gøbel, N. Larsen, C. Mølgaard, M. Jakobsen, and K. F. Michaelsen, “Probiotics to young children with atopic dermatitis: a randomized placebo-controlled trial,” International Journal of Probiotics and Prebiotics, vol. 5, no. 2, pp. 53–60, 2010.
  73. V. Rosenfeldt, E. Benfeldt, N. H. Valerius, A. Pærregaard, and K. F. Michaelsen, “Effect of probiotics on gastrointestinal symptoms and small intestinal permeability in children with atopic dermatitis,” Journal of Pediatrics, vol. 145, no. 5, pp. 612–616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Williams, “Review article: bacterial flora and pathogenesis in hepatic encephalopathy,” Alimentary Pharmacology and Therapeutics, vol. 25, supplement 1, pp. 17–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. G. R. Gibson and X. Wang, “Regulatory effects of bifidobacteria on the growth of other colonic bacteria,” Journal of Applied Bacteriology, vol. 77, no. 4, pp. 412–420, 1994. View at Scopus
  76. K. Madsen, A. Cornish, P. Soper et al., “Probiotic bacteria enhance murine and human intestinal epithelial barrier function,” Gastroenterology, vol. 121, no. 3, pp. 580–591, 2001. View at Scopus
  77. C. Yurdaydin, T. J. Walsh, H. D. Engler et al., “Gut bacteria provide precursors of benzodiazepine receptor ligands in a rat model of hepatic encephalopathy,” Brain Research, vol. 679, no. 1, pp. 42–48, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Malaguarnera, F. Greco, G. Barone, M. P. Gargante, M. Malaguarnera, and M. A. Toscano, “Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study,” Digestive Diseases and Sciences, vol. 52, no. 11, pp. 3259–3265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Y. Zhao, H. J. Wang, Z. Lu, and S. Z. Xu, “Intestinal microflora in patients with liver cirrhosis,” Chinese Journal of Digestive Diseases, vol. 5, no. 2, pp. 64–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. Q. Liu, Z. P. Duan, D. K. Ha, S. Bengmark, J. Kurtovic, and S. M. Riordan, “Synbiotic modulation of gut flora: effect of minimal hepatic encephalopathy in patients with cirrhosis,” Hepatology, vol. 39, no. 5, pp. 1441–1449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. R. G. McGee, A. Bakens, K. Wiley, S. M. Riordan, and A. C. Webster, “Probiotics for patients with hepatic encephalopathy,” Cochrane Database of Systematic Reviews, vol. 9, no. 11, Article ID CD008716, 2011.
  82. I. A. Abd El-Gawad, E. M. El-Sayed, S. A. Hafez, H. M. El-Zeini, and F. A. Saleh, “The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet,” International Dairy Journal, vol. 15, no. 1, pp. 37–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. T. D. T. Nguyen, J. H. Kang, and M. S. Lee, “Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects,” International Journal of Food Microbiology, vol. 113, no. 3, pp. 358–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Fukushima, A. Yamada, T. Endo, and M. Nakano, “Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on δ6-desaturase activity in the livers of rats fed a fat- and cholesterol-enriched diet,” Nutrition, vol. 15, no. 5, pp. 373–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. J. W. Anderson and S. E. Gilliland, “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999. View at Scopus
  86. J. Z. Xiao, S. Kondo, N. Takahashi et al., “Effects of milk products fermented by B longum on blood lipids in rats and healthy adult male volunteers,” Journal of Dairy Science, vol. 86, no. 7, pp. 2452–2461, 2003. View at Scopus
  87. E. A. Trautwein, D. Rieckhoff, and H. F. Erbersdobler, “Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters,” Journal of Nutrition, vol. 128, no. 11, pp. 1937–1943, 1998. View at Scopus
  88. C. K. Hsu, J. W. Liao, Y. C. Chung, C. P. Hsieh, and Y. C. Chan, “Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats,” Journal of Nutrition, vol. 134, no. 6, pp. 1523–1528, 2004. View at Scopus
  89. J. L. Causey, J. M. Feirtag, D. D. Gallaher, B. C. Tungland, and J. L. Slavin, “Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men,” Nutrition Research, vol. 20, no. 2, pp. 191–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. M. T. Liong, F. R. Dunshea, and N. P. Shah, “Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets,” British Journal of Nutrition, vol. 98, no. 4, pp. 736–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Kießling, J. Schneider, and G. Jahreis, “Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol,” European Journal of Clinical Nutrition, vol. 56, no. 9, pp. 843–849, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Schaafsma, W. J. A. Meuling, W. Van Dokkum, and C. Bouley, “Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers,” European Journal of Clinical Nutrition, vol. 52, no. 6, pp. 436–440, 1998. View at Scopus
  93. K. Hatakka, M. Mutanen, R. Holma, M. Saxelin, and R. Korpela, “L rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids,” Journal of the American College of Nutrition, vol. 27, no. 4, pp. 441–447, 2008. View at Scopus
  94. L. A. Simons, S. G. Amansec, and P. Conway, “Effect of L fermentum on serum lipids in subjects with elevated serum cholesterol,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 8, pp. 531–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. S. J. Lewis and S. Burmeister, “A double-blind placebo-controlled study of the effects of L acidophilus on plasma lipids,” European Journal of Clinical Nutrition, vol. 59, no. 6, pp. 776–780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Tarpila, A. Aro, I. Salminen et al., “The effect of flaxseed supplementation in processed foods on serum fatty acids and enterolactone,” European Journal of Clinical Nutrition, vol. 56, no. 2, pp. 157–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. M. H. Davidson, K. C. Maki, C. Synecki, S. A. Torri, and K. B. Drennan, “Effects of dietary inulin on serum lipids in men and women with hypercholesterolemia,” Nutrition Research, vol. 18, no. 3, pp. 503–517, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. K. A. Greany, M. J. L. Bonorden, J. M. Hamilton-Reeves et al., “Probiotic capsules do not lower plasma lipids in young women and men,” European Journal of Clinical Nutrition, vol. 62, no. 2, pp. 232–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Aso, H. Akaza, T. Kotake, T. Tsukamoto, K. Imai, and S. Naito, “Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial,” European Urology, vol. 27, no. 2, pp. 104–109, 1995. View at Scopus
  100. A. Klinder, A. Förster, G. Caderni, A. P. Femia, and B. L. Pool-Zobel, “Fecal water genotoxicity is predictive of tumor-preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synbiotic combination,” Nutrition and Cancer, vol. 49, no. 2, pp. 144–155, 2004. View at Scopus
  101. F. Bolognani, C. J. Rumney, B. L. Pool-Zobel, and I. R. Rowland, “Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats,” European Journal of Nutrition, vol. 40, no. 6, pp. 293–300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Pool-Zobel, J. Van Loo, I. Rowland, and M. B. Roberfroid, “Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer,” British Journal of Nutrition, vol. 87, supplement 2, pp. S273–S281, 2002. View at Scopus
  103. M. Roller, G. Caderni, G. Rechkemmer, and B. Watzl, “Long term treatment with a prebiotic modulates the gut-associated immune system of azomethane-treated F344 rats,” in Proceedings of the SKLM Symposium “Functional Food: Safety Aspects”, pp. 5–7, Karlsruhe, Germany, May 2002.
  104. M. Verghese, D. R. Rao, C. B. Chawan, L. L. Williams, and L. Shackelford, “Dietary inulin suppresses azoxymethane-induced aberrant crypt foci and colon tumors at the promotion stage in young Fisher 344 rats,” Journal of Nutrition, vol. 132, no. 9, pp. 2809–2813, 2002. View at Scopus
  105. H. S. Taper and M. B. Roberfroid, “Inulin/oligofructose and anticancer therapy,” British Journal of Nutrition, vol. 87, supplement 2, pp. S283–S286, 2002. View at Scopus
  106. A. P. Femia, C. Luceri, P. Dolara et al., “Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats,” Carcinogenesis, vol. 23, no. 11, pp. 1953–1960, 2002. View at Scopus
  107. J. Rafter, M. Bennett, G. Caderni, et al., “Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients,” American Journal of Clinical Nutrition, vol. 85, no. 2, pp. 488–496, 2007. View at Scopus
  108. Y. Aso, H. Akaza, T. Kotake, T. Tsukamoto, K. Imai, and S. Naito, “Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial,” European Urology, vol. 27, no. 2, pp. 104–109, 1995.
  109. Y. Ohashi, S. Nakai, T. Tsukamoto, et al., “Habitual intake of lactic acid bacteria and risk reduction of bladder cancer,” Urologia Internationalis, vol. 68, no. 4, pp. 273–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Okawa, H. Niibe, T. Arai, et al., “Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix: a phase III, multicenter, randomized, controlled study,” Cancer, vol. 72, no. 6, pp. 1949–1954, 1993. View at Scopus
  111. Z. Liu, H. Qin, Z. Yang, et al., “Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery—a double-blind study,” vol. 33, no. 1, pp. 50–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Chitapanarux, T. Chitapanarux, P. Traisathit, S. Kudumpee, E. Tharavichitkul, and V. Lorvidhaya, “Randomized controlled trial of live Lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients,” Radiation Oncology, vol. 5, no. 1, article 31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Delia, G. Sansotta, and V. Donato, “Use of probiotics for prevention of radiation-induced diarrhea,” World Journal of Gastroenterology, vol. 13, no. 6, pp. 912–915, 2007. View at Scopus
  114. P. Österlund, T. Ruotsalainen, R. Korpela, et al., “Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study,” British Journal of Cancer, vol. 97, no. 8, pp. 1028–1034, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Prakash and T. M. S. Chang, “Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats,” Nature Medicine, vol. 2, no. 8, pp. 883–887, 1996. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Ranganathan, B. Patel, P. Ranganathan et al., “Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats,” TheScientificWorldJournal, vol. 5, pp. 652–660, 2005. View at Scopus
  117. N. Ranganathan, B. Patel, P. Ranganathan et al., “Probiotics reduces azotemia in gottingen mini-pigs,” in Proceedings of the 3rd World Congress of Nephrology Poster Presentation, Singapore, June 2005.
  118. R. Palmquist, “A preliminary clinical evaluation of kibow biotics, a probiotic agent, on feline azotemia,” Journal of the American Holistic Medical Association, vol. 24, no. 4, pp. 23–27, 2006.
  119. M. L. Simenhoff, S. R. Dunn, G. P. Zollner et al., “Biomodulation of the toxic and nutritional effects of small bowel overgrowth in end stage kidney disease using freeze dried L acidophilus,” Mineral and Electrolyte Metabolism, vol. 22, no. 1–3, pp. 92–96, 1996. View at Scopus
  120. S. R. Dunn, M. L. Simenhoff, K. E. Ahmed et al., “Effect of oral administration of freeze-dried Lactobacillus acidophilus on small bowel bacterial overgrowth in patients with end stage kidney disease: reducing uremic toxins and improving nutrition,” International Dairy Journal, vol. 8, no. 5-6, pp. 545–553, 1998. View at Publisher · View at Google Scholar · View at Scopus
  121. E. Altermann, W. M. Russell, M. A. Azcarate-Peril et al., “Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 11, pp. 3906–3912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Ranganathan, E. A. Friedman, P. Tam, V. Rao, P. Ranganathan, and R. Dheer, “Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada,” Current Medical Research and Opinion, vol. 25, no. 8, pp. 1919–1930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. N. Ranganathan, P. Ranganathan, E. A. Friedman et al., “Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease,” Advances in Therapy, vol. 27, no. 9, pp. 634–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Loscalzo, “Lipid metabolism by gut microbes and atherosclerosis,” Circulation Research, vol. 109, no. 2, pp. 127–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. Z. Wang, E. Klipfell, B. J. Bennett et al., “Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease,” Nature, vol. 472, no. 7341, pp. 57–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Oxman, M. Shapira, R. Klein, N. Avazov, and B. Rabinowitz, “Oral administration of Lactobacillus induces cardioprotection,” Journal of Alternative and Complementary Medicine, vol. 7, no. 4, pp. 345–354, 2001. View at Scopus
  127. N. M. De Roos and M. B. Katan, “Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998,” American Journal of Clinical Nutrition, vol. 71, no. 2, pp. 405–411, 2000. View at Scopus
  128. M. Naruszewicz, M. L. Johansson, D. Zapolska-Downar, and H. Bukowska, “Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers,” American Journal of Clinical Nutrition, vol. 76, no. 6, pp. 1249–1255, 2002. View at Scopus
  129. V. Lam, J. Su, S. Koprowski et al., “Intestinal microbiota determine severity of myocardial infarction in rats,” The FASEB Journal, vol. 26, no. 4, pp. 1727–1735, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. M. D. Gershon, The Second Brain: the Scientific Basis of Gut Instinct and a Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestines, HarperCollins, New York, NY, USA, 1998.
  131. A. J. Macpherson and E. Slack, “The functional interactions of commensal bacteria with intestinal secretory IgA,” Current Opinion in Gastroenterology, vol. 23, no. 6, pp. 673–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. L. E. Goehler, R. P. A. Gaykema, K. T. Nguyen et al., “Interleukin-1β in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems?” Journal of Neuroscience, vol. 19, no. 7, pp. 2799–2806, 1999. View at Scopus
  133. J. Hosoi, G. F. Murphy, C. L. Egan et al., “Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide,” Nature, vol. 363, no. 6425, pp. 159–163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  134. L. V. Borovikova, S. Ivanova, M. Zhang et al., “Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin,” Nature, vol. 405, no. 6785, pp. 458–462, 2000. View at Publisher · View at Google Scholar · View at Scopus
  135. J. E. Ghia, P. Blennerhassett, H. Kumar-Ondiveeran, E. F. Verdu, and S. M. Collins, “The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model,” Gastroenterology, vol. 131, no. 4, pp. 1122–1130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Lyte and P. P. E. Freestone, Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, Springer, New York, NY, USA, 2010.
  137. M. Lyte, “Microbial endocrinology and infectious disease in the 21st century,” Trends in Microbiology, vol. 12, no. 1, pp. 14–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Lyte, “The role of microbial endocrinology in infectious disease,” Journal of Endocrinology, vol. 137, no. 3, pp. 343–345, 1993. View at Scopus
  139. P. Everest, “Stress and bacteria: microbial endocrinology,” Gut, vol. 56, no. 8, pp. 1037–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. V. V. Roshchina, “Evolutionary considerations of neurotransmitters in microbial, plant and animal cells,” in Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, M. Lyte and P. P. E. Freestone, Eds., pp. 17–52, Springer, New York, NY, USA, 2010.
  141. L. M. Iyer, L. Aravind, S. L. Coon, D. C. Klein, and E. V. Koonin, “Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role?” Trends in Genetics, vol. 20, no. 7, pp. 292–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Lyte, “Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics,” BioEssays, vol. 33, no. 8, pp. 574–581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. L. Desbonnet, L. Garrett, G. Clarke, J. Bienenstock, and T. G. Dinan, “The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat,” Journal of Psychiatric Research, vol. 43, no. 2, pp. 164–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. P. Bercik, E. F. Verdú, J. A. Foster et al., “Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection,” American Journal of Physiology, vol. 296, no. 3, pp. R587–R594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Zareie, K. Johnson-Henry, J. Jury et al., “Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress,” Gut, vol. 55, no. 11, pp. 1553–1560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Eutamene, F. Lamine, C. Chabo et al., “Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats,” Journal of Nutrition, vol. 137, no. 8, pp. 1901–1907, 2007. View at Scopus
  147. M. Messaoudi, R. Lalonde, N. Violle et al., “Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects,” The British Journal of Nutrition, vol. 105, no. 5, pp. 755–764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Gruenwald, H. J. Graubaum, and A. Harde, “Effect of a probiotic multivitamin compound on stress and exhaustion,” Advances in Therapy, vol. 19, no. 3, pp. 141–150, 2002. View at Scopus
  149. A. V. Rao, A. C. Bested, T. M. Beaune et al., “A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome,” Gut Pathogens, vol. 1, article 6, 2009.
  150. Z. A. Khachatryan, Z. A. Ktsoyan, G. P. Manukyan, D. Kelly, K. A. Ghazaryan, and R. I. Aminov, “Predominant role of host genetics in controlling the composition of gut microbiota,” PLoS ONE, vol. 3, no. 8, Article ID e3064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. G. P. Manukyan, K. A. Ghazaryan, Z. A. Ktsoyan et al., “Elevated systemic antibodies towards commensal gut microbiota in autoinflammatory condition,” PLoS ONE, vol. 3, no. 9, Article ID e3172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. E. R. Bolte, “Autism and clostridium tetani,” Medical Hypotheses, vol. 51, no. 2, pp. 133–144, 1998. View at Scopus
  153. S. M. Finegold, D. Molitoris, Y. Song et al., “Gastrointestinal microflora studies in late-onset autism,” Clinical Infectious Diseases, vol. 35, supplement 1, pp. S6–S16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. J. Lindh, “Possible interaction between probiotics and warfarin,” Läkartidningen, vol. 107, no. 13-14, article 917, 2010.
  155. D. J. Greenblatt and L. L. von Moltke, “Interaction of warfarin with drugs, natural substances, and foods,” Journal of Clinical Pharmacology, vol. 45, no. 2, pp. 127–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  156. Natural Medicines Comprehensive Database, Lactobacillus monograph, http://www.naturaldatabase.com/.
  157. Natural Medicines Comprehensive Database, Bifidobacteria monograph, http://www.naturaldatabase.com/.
  158. Natural Medicines Comprehensive Database, Saccharomyces boulardii monograph, http://www.naturaldatabase.com/.
  159. Florastor (Saccharomyces boulardii lyo) Package Insert, Biocodex, Beauvais, France, 2005–09.
  160. R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiological Reviews, vol. 46, no. 3, pp. 241–280, 1982. View at Scopus
  161. S. C. Resta, “Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling,” Journal of Physiology, vol. 587, no. 17, pp. 4169–4174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Kindberg, J. W. Suttie, K. Uchida, K. Hirauchi, and H. Nakao, “Menaquinone production and utilization in germ-free rats after inoculation with specific organisms,” Journal of Nutrition, vol. 117, no. 6, pp. 1032–1035, 1987. View at Scopus
  163. K. Hojo, S. Nagaoka, S. Murata, N. Taketomo, T. Ohshima, and N. Maeda, “Reduction of vitamin K concentration by salivary Bifidobacterium strains and their possible nutritional competition with Porphyromonas gingivalis,” Journal of Applied Microbiology, vol. 103, no. 5, pp. 1969–1974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. C. Ioannides, “Effect of diet and nutrition on the expression of cytochromes P450,” Xenobiotica, vol. 29, no. 2, pp. 109–154, 1999. View at Scopus
  165. L. E. Schmidt and K. Dalhoff, “Food-drug interactions,” Drugs, vol. 62, no. 10, pp. 1481–1502, 2002. View at Scopus
  166. B. N. Singh, “Effects of food on clinical pharmacokinetics,” Clinical Pharmacokinetics, vol. 37, no. 3, pp. 213–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  167. R. Z. Harris, G. R. Jang, and S. Tsunoda, “Dietary effects on drug metabolism and transport,” Clinical Pharmacokinetics, vol. 42, no. 13, pp. 1071–1088, 2003. View at Publisher · View at Google Scholar · View at Scopus
  168. A. L. D'Souza, C. Rajkumar, J. Cooke, and C. J. Bulpitt, “Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis,” British Medical Journal, vol. 324, no. 7350, pp. 1361–1364, 2002. View at Scopus
  169. United States Department of Health and Human Services, “Evidence report/technology assessment number 200,” Tech. Rep. 11-E007, AHRQ, 2011.
  170. The Human Microbiome Project Consortium, “Structure, function and diversity of the healthy human microbiome,” Nature, vol. 486, pp. 207–214, 2012.
  171. T. Yatsunenko, F. E. Rey, M. J. Manary, et al., “Human gut microbiome viewed across age and geography,” Nature, vol. 486, pp. 222–228, 2012.
  172. B. L. Cantael, V. Lombard, and B. Henrissat, “Complex carbohydrate utilization by the healthy human microbiome,” PLoS One, vol. 7, no. 6, Article ID e28742, 2012.
  173. K. Li, M. Bihan, S. Yooseph, and B. A. Methe, “Analyses of the microbial diversity across the human microbiome,” PLoS One, vol. 7, no. 6, Article ID e32118, 2012.