About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 963403, 9 pages
http://dx.doi.org/10.1155/2012/963403
Review Article

Disposition Kinetics of Taxanes in Peritoneal Dissemination

Department of Pharmacy, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa 920-8641, Japan

Received 6 January 2012; Accepted 14 February 2012

Academic Editor: Yan Li

Copyright © 2012 Ken'ichi Miyamoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Diaz and J. M. Andreu, “Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition,” Biochemistry, vol. 32, no. 11, pp. 2747–2755, 1993. View at Scopus
  2. N. Furui, T. Yamazaki, K. Yokogawa, Y. Fushida, K. Miwa, and K. Miyamoto, “Ascites and the plasma cencentration-time courses of the taxanes after an intraperitoneal administration in patients with peritoneal tumors,” Japanese Journal of Pharmaceutical Health Care and Sciences, vol. 29, no. 3, pp. 263–269, 2003.
  3. S. Fushida, F. Nao, S. Kinami et al., “Pharmacologic study of intraperitoneal docetaxel in gastric cancer patients with peritoneal dissemination,” Japanese Journal of Cancer and Chemotherapy, vol. 29, no. 10, pp. 1759–1763, 2002. View at Scopus
  4. S. Fushida, N. Furui, S. Kinami et al., “Pharmacologic study of intraperitoneal paclitaxel in gastric cancer patients with peritoneal dissemination,” Japanese Journal of Cancer and Chemotherapy, vol. 29, no. 12, pp. 2164–2167, 2002. View at Scopus
  5. Y. Yonemura, E. Bandou, K. Kinoshita et al., “Effective therapy for peritoneal dissemination in gastric cancer,” Surgical Oncology Clinics of North America, vol. 12, no. 3, pp. 635–648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. H. Sugarbaker, J. T. Mora, P. Carmignani, O. A. Stuart, and D. Yoo, “Update on chemotherapeutic agents utilized for perioperative intraperitoneal chemotherapy,” Oncologist, vol. 10, no. 2, pp. 112–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. H. Sugarbaker, “Peritoneal-plasma barrier,” in Peritoneal Carcinomatosis: Principles of Management, P. H. Sugarbaker, Ed., pp. 53–63, Kluwer Academic Publisher, Boston, Mass, USA, 1996.
  8. J. C. Vergniol, R. Bruno, G. Montay, and A. Frydman, “Determination of Taxotere in human plasma by a semi-automated high-performance liquid chromatographic method,” Journal of Chromatography, vol. 582, no. 1-2, pp. 273–278, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Loos, J. Verweij, K. Nooter, G. Stoter, and A. Sparreboom, “Sensitive determination of docetaxel in human plasma by liquid-liquid extraction and reversed-phase high-performance liquid chromatography,” Journal of Chromatography B, vol. 693, no. 2, pp. 437–441, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Mohamed and P. H. Sugarbaker, “Intraperitoneal taxanes,” Surgical Oncology Clinics of North America, vol. 12, no. 3, pp. 825–833, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. L. S. Hofstra, A. M. E. Bos, E. G. E. de Vries et al., “Kinetic modeling and efficacy of intraperitoneal paclitaxel combined with intravenous cyclophosphamide and carboplatin as first-line treatment in ovarian cancer,” Gynecologic Oncology, vol. 85, no. 3, pp. 517–523, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Mohamed, O. A. Stuart, and P. H. Sugarbaker, “Pharmacokinetics and tissue distribution of intraperitoneal docetaxel with different carrier solutions,” Journal of Surgical Research, vol. 113, no. 1, pp. 114–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Morgan, J. H. Doroshow, T. Synold, et al., “Phase I trial of intraperitoneal docetaxel in the treatment of advanced malignancies primarily confined to the peritoneal cavity dose-limiting toxicity and pharmacokinetics,” Clinical Cancer Research, vol. 9, pp. 5896–5901, 2003.
  14. M. C. Bissery, G. Nohynek, G. Sanderink, and F. Lavelle, “Docetaxel (Taxotere): a review of preclinical and clinical experience. part I: preclinical experience,” Anti-Cancer Drugs, vol. 6, no. 3, pp. 339–368, 1995. View at Scopus
  15. T. Yoshida, “Contributions of the ascites hepatoma to the concept of malignancy of cancer,” Annals of the New York Academy of Sciences, vol. 63, no. 5, pp. 852–881, 1956. View at Scopus
  16. Y. Kamijo, C. Ito, M. Nomura, Y. Sai, and K. Miyamoto, “Surfactants influence the distribution of taxanes in peritoneal dissemination tumor-bearing rats,” Cancer Letters, vol. 287, no. 2, pp. 182–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Yonemura, Y. Endou, E. Bando et al., “Effect of intraperitoneal administration of docetaxel on peritoneal dissemination of gastric cancer,” Cancer Letters, vol. 210, no. 2, pp. 189–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Shimada, M. Nomura, K. Yokogawa et al., “Pharmacokinetic advantage of intraperitoneal injection of docetaxel in the treatment for peritoneal dissemination of cancer in mice,” Journal of Pharmacy and Pharmacology, vol. 57, no. 2, pp. 177–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. J. Schuurhuis, H. J. Broxterman, H. M. Pinedo et al., “The polyoxyethylene castor oil Cremophor EL modifies multidrug resistance,” British Journal of Cancer, vol. 62, no. 4, pp. 591–594, 1990. View at Scopus
  20. E. Friche, P. B. Jensen, M. Sehested, E. J. F. Demant, and N. N. Nissen, “The solvents Cremophor EL and Tween 80 modulate daunorubicin resistance in the multidrug resistant Ehrlich ascites tumor,” Cancer Communications, vol. 2, no. 9, pp. 297–303, 1990. View at Scopus
  21. A. Sparreboom, O. van Teilingen, W. J. Nooijen, and J. H. Beijnen, “Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle cremophor EL,” Cancer Research, vol. 56, no. 9, pp. 2112–2115, 1996. View at Scopus
  22. A. G. Ellis and L. K. Webster, “Inhibition of paclitaxel elimination in the isolated perfused rat liver by Cremophor EL,” Cancer Chemotherapy and Pharmacology, vol. 43, no. 1, pp. 13–18, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. H. A. Bardelmeijer, M. Ouwehand, M. M. Malingre, J. H. Schellens, J. H. Beijnen, and O. van Tellingen, “Entrapment by Cremophor EL decreases the absorption of paclitaxel from the gut,” Cancer Chemotherapy and Pharmacology, vol. 49, no. 2, pp. 119–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Gelderblom, J. Verweij, D. M. van Zomeren et al., “Influence of Cremophor EL on the bioavailability of intraperitoneal paclitaxel,” Clinical Cancer Research, vol. 8, no. 4, pp. 1237–1241, 2002. View at Scopus
  25. L. K. Webster, M. E. Linsenmeyer, M. J. Millward, C. Morton, J. F. Bishop, and D. M. Woodcock, “Measurement of cremophor EL following taxol: plasma levels sufficient to reverse drug exclusion mediated by the multidrug-resistant phenotype,” Journal of the National Cancer Institute, vol. 85, no. 20, pp. 1685–1690, 1993. View at Scopus
  26. L. K. Webster, M. E. Linsenmeyer, D. Rischin, M. E. Urch, D. M. Woodcock, and M. J. Millward, “Plasma concentrations of polysorbate 80 measured in patients following administration of docetaxel or etoposide,” Cancer Chemotherapy and Pharmacology, vol. 39, no. 6, pp. 557–560, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. Woodcock, M. E. Linsenmeyer, G. Chojnowski et al., “Reversal of multidrug resistance by surfactants,” British Journal of Cancer, vol. 66, no. 1, pp. 62–68, 1992. View at Scopus
  28. O. van Tellingen, J. H. Beijnen, J. Verweij, E. J. Scherrenburg, W. J. Nooijen, and A. Sparreboom, “Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice,” Clinical Cancer Research, vol. 5, no. 10, pp. 2918–2924, 1999. View at Scopus
  29. S. Wakusawa, S. Nakamura, and K. Miyamoto, “Establishment by adriamycin exposure of multidrug-resistant rat ascites hepatoma AH130 cells showing low DT-diaphorase activity and high cross resistance to mitomycins,” Japanese Journal of Cancer Research, vol. 88, no. 1, pp. 88–96, 1997. View at Scopus
  30. K. Yokogawa, M. Jin, N. Furui et al., “Disposition kinetics of taxanes after intraperitoneal administration in rats and influence of surfactant vehicles,” Journal of Pharmacy and Pharmacology, vol. 56, no. 5, pp. 629–634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. L. van Zuylen, J. Verweij, and A. Sparreboom, “Role of formulation vehicles in taxane pharmacology,” Investigational New Drugs, vol. 19, no. 2, pp. 125–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Sparreboom, J. Verweij, M. E. L. van de Burg et al., “Disposition of Cremophor EL in humans limits the potential for modulation of the multidrug resistance phenotype in vivo,” Clinical Cancer Research, vol. 4, no. 8, pp. 1937–1942, 1998. View at Scopus
  33. S. Fushida, J. Kinoshita, Y. Yagi et al., “Dual anti-cancer effects of weekly intraperitoneal docetaxel in treatment of advanced gastric cancer patients with peritoneal carcinomatosis: a feasibility and pharmacokinetic study,” Oncology Reports, vol. 19, no. 5, pp. 1305–1310, 2008. View at Scopus
  34. R. T. Dorr, “Pharmacology and toxicology of Cremophor EL diluent,” Annals of Pharmacotherapy, vol. 28, no. 5, pp. S11–S14, 1994. View at Scopus
  35. M. Jin, T. Shimada, K. Yokogawa et al., “Cremophor EL releases cyclosporin A adsorbed on blood cells and blood vessels, and increases apparent plasma concentration of cyclosporin A,” International Journal of Pharmaceutics, vol. 293, no. 1-2, pp. 137–144, 2005. View at Publisher · View at Google Scholar · View at Scopus