About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 259457, 6 pages
http://dx.doi.org/10.1155/2013/259457
Research Article

Molecular Detection of Antibiotic Resistance in South African Isolates of Helicobacter pylori

1Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
2Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon

Received 4 December 2012; Revised 1 April 2013; Accepted 5 April 2013

Academic Editor: N. K. Maroju

Copyright © 2013 Nicoline F. Tanih and Roland N. Ndip. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Alarcón, A. E. Vega, D. Domingo, M. J. Martínez, and M. López-Brea, “Clarithromycin resistance among Helicobacter pylori strains isolated from children: prevalence and study of mechanism of resistance by PCR-restriction fragment length polymorphism analysis,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 486–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. N. F. Tanih, B. I. Okeleye, L. M. Ndip et al., “Helicobacter pylori prevalence in dyspeptic patients in the Eastern Cape Province—race and disease status,” South African Medical Journal, vol. 100, no. 11, pp. 734–737, 2010. View at Scopus
  3. K. H. Hung, B. S. Sheu, W. L. Chang, H. M. Wu, C. C. Liu, and J. J. Wu, “Prevalence of primary fluoroquinolone resistance among clinical isolates of Helicobacter pylori at a University Hospital in Southern Taiwan,” Helicobacter, vol. 14, no. 1, pp. 61–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Versalovic, D. Shortridge, K. Kibler et al., “Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 2, pp. 477–480, 1996. View at Scopus
  5. P. Malfertheiner, F. Megraud, C. A. O'Morain, et al., “Management of Helicobacter pylori infection—the Maastricht IV/ Florence Consensus Report,” Gut, vol. 6, no. 5, pp. 646–664, 2012.
  6. V. De Francesco, A. Zullo, C. Hassan, F. Giorgio, R. Rosania, and E. Ierardi, “Mechanisms of Helicobacter pylori antibiotic resistance: an updated appraisal,” World Journal of Gastrointestinal Pathophysiology, vol. 2, no. 3, pp. 35–41, 2011.
  7. E. Glocker, H. P. Stueger, and M. Kist, “Quinolone resistance in Helicobacter pylori isolates in Germany,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 1, pp. 346–349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Llanes, C. Soria, S. Nagashima et al., “Phenotypic and genetic characterization of antimicrobial profiles of Helicobacter pylori strains in Cuba,” Journal of Health, Population and Nutrition, vol. 28, no. 2, pp. 124–129, 2010. View at Scopus
  9. S. Suerbaum and M. Achtman, “Population Genetics—Helicobacter pylori,” in Helicobacter Pylori: Physiology and Genetics, H. L. T. Mobley, G. L. Mendz, and S. L. Hazell, Eds., chapter 32, ASM Press, Washington, DC, USA, 2001.
  10. A. Occhialini, M. Urdaci, F. Doucet-Populaire, C. M. Bébéar, H. Lamouliatte, and F. Mégraud, “Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 12, pp. 2724–2728, 1997. View at Scopus
  11. M. I. García-Arata, F. Baquero, L. De Rafael et al., “Mutations in 23S rRNA in Helicobacter pylori conferring resistance to erythromycin do not always confer resistance to clarithromycin,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 2, pp. 374–376, 1999. View at Scopus
  12. J. M. Kim, J. S. Kim, N. Kim et al., “Gene mutations of 23S rRNA associated with clarithromycin resistance in Helicobacter pylori strains isolated from Korean patients,” Journal of Microbiology and Biotechnology, vol. 18, no. 9, pp. 1584–1589, 2008. View at Scopus
  13. G. Wang, T. J. M. Wilson, Q. Jiang, and D. E. Taylor, “Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 3, pp. 727–733, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Garcia, J. Raymond, M. Garnier, J. Cremniter, and C. Burucoa, “Distribution of spontaneous gyrA mutations in 97 fluoroquinolone—resistant Helicobacter pylori isolates collected in France,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 1, pp. 550–551, 2012.
  15. Clinical Laboratory Standard institute (CLSI), Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated Fastidious Bacteria, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2nd edition, 2010, CLSI document M45-A2.
  16. N. F. Tanih, B. I. Okeleye, N. Naidoo et al., “Marked susceptibility of South African Helicobacter pylori strains to ciprofloxacin and amoxicillin: clinical implications,” South African Medical Journal, vol. 100, no. 1, pp. 49–52, 2010. View at Scopus
  17. N. Ahmad, W. R. Zakaria, S. A. Abdullah, and R. Mohamed, “Characterization of clarithromycin resistance in Malaysian isolates of Helicobacter pylori,” World Journal of Gastroenterology, vol. 15, no. 25, pp. 3161–3165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Cambau, V. Allerheiligen, C. Coulon et al., “Evaluation of a new test, GenoType HelicoDR, for molecular detection of antibiotic resistance in Helicobacter pylori,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3600–3607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Miyachi, I. Miki, N. Aoyama et al., “Primary levofloxacin resistance and gyrA/B mutations among Helicobacter pylori in Japan,” Helicobacter, vol. 11, no. 4, pp. 243–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Khan, S. Nahar, J. Sultana, M. M. Ahmad, and M. Rahman, “T2182C mutation in 23S rRNA is associated with clarithromycin resistance in Helicobacter pylori isolates obtained in Bangladesh,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3567–3569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Matsuoka, Y. Yoshida, K. Hayakawa, S. Fukuchi, and K. Sugano, “Simultaneous colonisation of Helicobacter pylori with and without mutations in the 23S rRNA gene in patients with no history of clarithromycin exposure,” Gut, vol. 45, no. 4, pp. 503–507, 1999. View at Scopus
  22. J. Kohanteb, A. Bazargani, M. Saberi-Firoozi, and A. Mobasser, “Antimicrobial susceptibility testing of Helicobacter pylori to selected agents by agar dilution method in Shiraz-Iran,” Indian Journal of Medical Microbiology, vol. 25, no. 4, pp. 374–377, 2007. View at Scopus
  23. F. Megraud, S. Coenen, A. Versporten, et al., “Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption,” Gut, vol. 62, pp. 34–42, 2013. View at Publisher · View at Google Scholar
  24. R. A. Moore, B. Beckthold, S. Wong, A. Kureishi, and L. E. Bryan, “Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 1, pp. 107–111, 1995. View at Scopus