About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 290634, 8 pages
http://dx.doi.org/10.1155/2013/290634
Review Article

Fluorescence-Guided Surgery and Fluorescence Laparoscopy for Gastrointestinal Cancers in Clinically-Relevant Mouse Models

1Department of Surgery, University of California, San Diego, CA, USA
2AntiCancer, Inc., San Diego, CA, USA
3Moores UCSD Cancer Center, 3855 Health Science Drive No. 0987, La Jolla, CA 92093-0987, USA

Received 7 July 2012; Accepted 7 November 2012

Academic Editor: Guido Schumacher

Copyright © 2013 Cristina A. Metildi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Tran Cao, S. Kaushal, R. S. Menen et al., “Submillimeter-resolution fluorescence laparoscopy of pancreatic cancer in a carcinomatosis mouse model visualizes metastases not seen with standard laparoscopy,” Journal of Laparoendoscopic and Advanced Surgical Techniques, vol. 21, no. 6, pp. 485–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. H. S. Tran Cao, S. Kaushal, C. A. Metildi, et al., “Tumor-specific fluorescence antibody imaging enables accurate staging laparoscopy in an orthotopic model of pancreatic cancer,” Hepatogastroenterology, vol. 59, no. 118, pp. 1994–1999, 2012.
  3. C. A. Metildi, S. Kaushal, C. Lee, et al., “An LED light source and novel fluorophore combinations improve fluorescence laparoscopic detection of metastatic pancreatic cancer in orthotopic mouse models,” Journal of the American College of Surgeons, vol. 214, no. 6, pp. 997–1007, 2012. View at Publisher · View at Google Scholar
  4. C. A. Metildi, S. Kaushal, C. R. Hardamon, et al., “Fluorescence-guided surgery allows for more complete resection of pancreatic cancer, resulting in longer disease-free survival compared with standard surgery in orthotopic mouse models,” Journal of the American College of Surgeons, vol. 215, no. 1, pp. 126–135, 2012.
  5. C. Metildi, S. Kaushal, C. S. Snyder, et al., “Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model,” Journal of Surgical Research, vol. 179, no. 1, pp. 87–93, 2013.
  6. M. Bouvet, R. A. Gamagami, E. A. Gilpin et al., “Factors influencing survival after resection for periampullary neoplasms,” American Journal of Surgery, vol. 180, no. 1, pp. 13–17, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. K. C. Conlon, E. Dougherty, D. S. Klimstra, D. G. Coit, A. D. M. Turnbull, and M. F. Brennan, “The value of minimal access surgery in the staging of patients with potentially resectable peripancreatic malignancy,” Annals of Surgery, vol. 223, no. 2, pp. 134–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Yeo, J. L. Cameron, K. D. Lillemoe, et al., “Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients,” Annals of Surgery, vol. 221, no. 6, pp. 721–731, 1995. View at Publisher · View at Google Scholar
  9. T. Jiang, E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings, and R. Y. Tsien, “Tumor imaging by means of proteolytic activation of cell-penetrating peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17867–17872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, and P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” Journal of Biomedical Optics, vol. 8, no. 4, pp. 636–641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Kishimoto, T. Kojima, Y. Watanabe et al., “In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus,” Nature Medicine, vol. 12, no. 10, pp. 1213–1219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. Olson, T. A. Aguilera, T. Jiang et al., “In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer,” Integrative Biology, vol. 1, no. 5-6, pp. 382–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Bouvet and R. M. Hoffman, “Glowing tumors make for better detection and resection,” Science Translational Medicine, vol. 3, no. 110, article 110fs110, 2011.
  14. S. Kaushal, M. K. McElroy, G. A. Luiken et al., “Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer,” Journal of Gastrointestinal Surgery, vol. 12, no. 11, pp. 1938–1950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Kishimoto, M. Zhao, K. Hayashi et al., “In vivo internal tumor illumination by telomerase-dependent adenoviral GFP for precise surgical navigation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14514–14517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. McElroy, S. Kaushal, G. A. Luiken et al., “Imaging of primary and metastatic pancreatic cancer using a fluorophore-conjugated anti-CA19-9 antibody for surgical navigation,” World Journal of Surgery, vol. 32, no. 6, pp. 1057–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. T. Nguyen, E. S. Olson, T. A. Aguilera et al., “Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4317–4322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. S. Tran Cao, S. Kaushal, C. Lee et al., “Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model,” Surgical Endoscopy and Other Interventional Techniques, vol. 25, no. 1, pp. 48–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. M. van Dam, G. Themelis, L. M. Crane, et al., “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results,” Nature Medicine, vol. 17, no. 10, pp. 1315–1319, 2011. View at Publisher · View at Google Scholar
  20. B. M. Stiles, A. Bhargava, P. S. Adusumilli et al., “The replication-competent oncolytic herpes simplex mutant virus NV1066 is effective in the treatment of esophageal cancer,” Surgery, vol. 134, no. 2, pp. 357–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. M. Stiles, P. S. Adusumilli, A. Bhargava et al., “Minimally invasive localization of oncolytic herpes simplex viral therapy of metastatic pleural cancer,” Cancer Gene Therapy, vol. 13, no. 1, pp. 53–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Kishimoto, R. Aki, Y. Urata, et al., “Tumor-selective, adenoviral-mediated GFP genetic labeling of human cancer in the live mouse reports future recurrence after resection,” Cell Cycle, vol. 10, no. 16, pp. 2737–2741, 2011.
  23. H. Kishimoto, Y. Urata, N. Tanaka, T. Fujiwara, and R. M. Hoffman, “Selective metastatic tumor labeling with green fluorescent protein and killing by systemic administration of telomerase-dependent adenoviruses,” Molecular Cancer Therapeutics, vol. 8, no. 11, pp. 3001–3008, 2009. View at Publisher · View at Google Scholar · View at Scopus