About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 302398, 7 pages
http://dx.doi.org/10.1155/2013/302398
Research Article

Age-Dependent Fecal Bacterial Correlation to Inflammatory Bowel Disease for Newly Diagnosed Untreated Children

1Hedmark University College, Hamar, Norway
2Department of Chemistry, Biotechnology and Food Science, Norwegian University for Life Sciences, Ås, Oslo, Norway
3Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
4EpiGen Institute, Research Centre, Akershus University Hospital, Lørenskog, Norway
5Pediatric Department, Oslo University Hospital, Ullevål, Oslo, Norway
6EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
7Medical Clinic, Oslo University Hospital, Rikshospitalet, Norway

Received 9 February 2013; Accepted 1 April 2013

Academic Editor: Devendra Amre

Copyright © 2013 Felix Chinweije Nwosu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Mai and P. V. Draganov, “Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health,” World Journal of Gastroenterology, vol. 15, no. 1, pp. 81–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ventura, S. O'Flaherty, M. J. Claesson et al., “Genome-scale analyses of health-promoting bacteria: probiogenomics,” Nature Reviews Microbiology, vol. 7, no. 1, pp. 61–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I. Gordon, “The human microbiome project,” Nature, vol. 449, no. 7164, pp. 804–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. H. Salzman and C. L. Bevins, “Negative interactions with the microbiota: IBD,” in GI Microbiota and Regulation of the Immune System, G. B. Huffnagle and M. C. Noverr, Eds., vol. 635, pp. 67–78, Springer, New York, NY, USA, 2008.
  6. M. J. Blaser and S. Falkow, “What are the consequences of the disappearing human microbiota?” Nature Reviews Microbiology, vol. 7, no. 12, pp. 887–894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nature Reviews Immunology, vol. 9, no. 5, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. F. Stange, S. P. L. Travis, S. Vermeire et al., “European evidence based consensus on the diagnosis and management of Crohn's disease: definitions and diagnosis,” Gut, vol. 55, no. 1, pp. i1–i15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Sokol, C. Lay, P. Seksik, and G. W. Tannock, “Analysis of bacterial bowel communities of IBD patients: what has it revealed?” Inflammatory Bowel Diseases, vol. 14, no. 6, pp. 858–867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Sokol, B. Pigneur, L. Watterlot et al., “Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16731–16736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. F. Stange, S. P. L. Travis, S. Vermeire et al., “European evidence-based consensus on the diagnosis and management of ulcerative colitis: definitions and diagnosis,” Journal of Crohn's and Colitis, vol. 2, no. 1, pp. 1–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Mondot, S. Kang, J. P. Furet et al., “Highlighting new phylogenetic specificities of Crohn's disease microbiota,” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 185–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Perminow, S. Brackmann, L. G. Lyckander et al., “A characterization in childhood inflammatory bowel disease, a new population-based inception cohort from south-eastern Norway, 2005–07, showing increased incidence in crohn's disease,” Scandinavian Journal of Gastroenterology, vol. 44, no. 4, pp. 446–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. H. Reikvam, G. Perminow, L. G. Lyckander et al., “Increase of regulatory T cells in ileal mucosa of untreated pediatric Crohn's disease patients,” Scandinavian Journal of Gastroenterology, vol. 46, no. 5, pp. 550–560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Papa, M. Docktor, C. Smillie, et al., “Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease,” PLoS ONE, vol. 7, no. 6, Article ID e39242, 2012. View at Publisher · View at Google Scholar
  16. V. Iebba, M. Aloi, F. Civitelli, and S. Cucchiara, “Gut microbiota and pediatric disease,” Digestive Diseases, vol. 29, no. 6, pp. 531–539, 2011. View at Publisher · View at Google Scholar
  17. M. Zimonja, K. Rudi, P. Trosvik, and T. Næs, “Multivariate curve resolution of mixed bacterial DNA sequence spectra: identification and quantification of bacteria in undefined mixture samples,” Journal of Chemometrics, vol. 22, no. 5, pp. 309–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sekelja, I. Rud, S. H. Knutsen et al., “Abrupt temporal fluctuations in chicken fecal microbiota explained by gastrointestinal origin,” Applied and Environmental Microbiology, vol. 78, no. 8, pp. 2941–2948, 2012. View at Publisher · View at Google Scholar
  19. F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Scopus
  20. H. Renz, P. Brandtzaeg, and M. Hornef, “The impact of perinatal immune development on mucosal homeostasis and chronic inflammation,” Nature Reviews Immunology, vol. 12, no. 1, pp. 9–23, 2012. View at Publisher · View at Google Scholar
  21. R. David, “Regulatory T cells: a helping hand from Bacteroides fragilis,” Nature Reviews Immunology, vol. 10, no. 8, p. 539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Lodinova-Zadnikova, L. Prokešová, I. Kocourková, J. Hrdý, and J. Žižka, “Prevention of allergy in infants of allergic mothers by probiotic Escherichia coli,” International Archives of Allergy and Immunology, vol. 153, no. 2, pp. 201–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. O. Storro, T. Oien, O. Langsrud, K. Rudi, C. Dotterud, and R. Johnsen, “Temporal variations in early gut microbial colonization are associated with allergen-specific immunoglobulin E but not atopic eczema at 2 years of age,” Clinical and Experimental Allergy, vol. 41, no. 11, pp. 1545–1554, 2011. View at Publisher · View at Google Scholar
  24. K. Rudi, O. Storro, T. Oien, and R. Johnsen, “Modelling bacterial transmission in human allergen-specific IgE sensitization,” Letters in Applied Microbiology, vol. 54, no. 5, pp. 447–454, 2012. View at Publisher · View at Google Scholar
  25. M. Baumgart, B. Dogan, M. Rishniw et al., “Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum,” ISME Journal, vol. 1, no. 5, pp. 403–418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. Erwin and A. L. Smith, “Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior,” Trends in Microbiology, vol. 15, no. 8, pp. 355–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Yatsunenko, F. E. Rey, M. J. Manary et al., “Human gut microbiome viewed across age and geography,” Nature, vol. 486, no. 7402, pp. 222–227, 2012. View at Publisher · View at Google Scholar
  28. H. C. Vebø, M. Sekelja, R. Nestestog et al., “Temporal development of the infant gut microbiota in immunoglobulin E-sensitized and nonsensitized children determined by the GA-map infant array,” Clinical and Vaccine Immunology, vol. 18, no. 8, pp. 1326–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus