About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 356217, 5 pages
http://dx.doi.org/10.1155/2013/356217
Clinical Study

Association of IS605 and cag-PAI of Helicobacter pylori Isolated from Patients with Gastrointestinal Diseases in Taiwan

1Department of Microbiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
2Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
3School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
4Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
5School of Medicine, Taipei Medical University, Taipei 11031, Taiwan

Received 4 September 2012; Revised 26 December 2012; Accepted 19 January 2013

Academic Editor: Vikram Kate

Copyright © 2013 Chih-Ho Lai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Blaser, “Ecology of Helicobacter pylori in the human stomach,” The Journal of Clinical Investigation, vol. 100, no. 4, pp. 759–762, 1997. View at Scopus
  2. B. E. Dunn, H. Cohen, and M. J. Blaser, “Helicobacter pylori,” Clinical Microbiology Reviews, vol. 10, no. 4, pp. 720–741, 1997. View at Scopus
  3. Y. Yamaoka, “Pathogenesis of Helicobacter pylori-related gastroduodenal diseases from molecular epidemiological studies,” Gastroenterology Research and Practice, vol. 2012, Article ID 371503, 9 pages, 2012. View at Publisher · View at Google Scholar
  4. S. Censini, C. Lange, Z. Xiang et al., “cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14648–14653, 1996. View at Scopus
  5. D. E. Taylor, “Helicobacter pylori and its genome: lessons from the treasure map,” Canadian Journal of Gastroenterology, vol. 13, no. 3, pp. 218–223, 1999. View at Scopus
  6. M. Hatakeyama, “Helicobacter pylori and gastric carcinogenesis,” Journal of Gastroenterology, vol. 44, no. 4, pp. 239–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Slater, R. J. Owen, M. Williams, and R. E. Pounder, “Conservation of the cag pathogenicity island of Helicobacter pylori: associations with vacuolating cytotoxin allele and IS605 diversity,” Gastroenterology, vol. 117, no. 6, pp. 1308–1315, 1999. View at Scopus
  8. N. S. Akopyants, S. W. Clifton, D. Kersulyte et al., “Analyses of the cag pathogenicity island of Helicobacter pylori,” Molecular Microbiology, vol. 28, no. 1, pp. 37–53, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Deguchi, M. Igarashi, K. Watanabe, and A. Takagi, “Analysis of the cag pathogenicity island and IS605 of Helicobacter pylori strains isolated from patients with gastric cancer in Japan,” Alimentary Pharmacology and Therapeutics, vol. 20, supplement 1, pp. 13–16, 2004. View at Scopus
  10. P. J. Jenks, F. Mégraud, and A. Labigne, “Clinical outcome after infection with Helicobacter pylori does not appear to be reliably predicted by the presence of any of the genes of the cag pathogenicity island,” Gut, vol. 43, no. 6, pp. 752–758, 1998. View at Scopus
  11. S. Maeda, H. Yoshida, T. Ikenoue et al., “Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates,” Gut, vol. 44, no. 3, pp. 336–341, 1999. View at Scopus
  12. H. M. A. Schmidt, S. Andres, C. Nilsson et al., “The cag PAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, no. 4, pp. 439–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. I. Hsu, I. R. Hwang, D. Cittelly et al., “Clinical presentation in relation to diversity within the Helicobacter pylori cag pathogenicity island,” American Journal of Gastroenterology, vol. 97, no. 9, pp. 2231–2238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Kauser, A. A. Khan, M. A. Hussain et al., “The cag pathogenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations,” Journal of Clinical Microbiology, vol. 42, no. 11, pp. 5302–5308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Ali, A. Khan, S. K. Tiwari, N. Ahmed, L. V. Rao, and C. M. Habibullah, “Association between cag-pathogenicity island in Helicobacter pylori isolates from peptic ulcer, gastric carcinoma, and non-ulcer dyspepsia subjects with histological changes,” World Journal of Gastroenterology, vol. 11, no. 43, pp. 6815–6822, 2005. View at Scopus
  16. M. Sozzi, M. L. Tomasini, C. Vindigni et al., “Heterogeneity of cag genotypes and clinical outcome of Helicobacter pylori infection,” Journal of Laboratory and Clinical Medicine, vol. 146, no. 5, pp. 262–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Lu, Y. Yamaoka, and D. Y. Graham, “Helicobacter pylori virulence factors: facts and fantasies,” Current Opinion in Gastroenterology, vol. 21, no. 6, pp. 653–659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. H. Lai, C. H. Kuo, Y. C. Chen et al., “High prevalence of cagA- and babA2-positive Helicobacter pylori clinical isolates in Taiwan,” Journal of Clinical Microbiology, vol. 40, no. 10, pp. 3860–3862, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. J. Lin, W. C. Lo, C. L. Perng, G. Y. Tseng, A. F. Y. Li, and Y. H. Ou, “Mucosal polymerase chain reaction for diagnosing Helicobacter pylori infection in patients with bleeding peptic ulcers,” World Journal of Gastroenterology, vol. 11, no. 3, pp. 382–385, 2005. View at Scopus
  20. S. Redeen, F. Petersson, E. Tornkrantz, et al., “Reliability of diagnostic tests for Helicobacter pylori infection,” Gastroenterology Research and Practice, vol. 2011, Article ID 940650, 6 pages, 2011. View at Publisher · View at Google Scholar
  21. S. M. Sheu, B. S. Sheu, H. B. Yang, C. Li, T. C. Chu, and J. J. Wu, “Presence of iceA1 but not cagA, cagC, cagE, cagF, cagN, cagT, or orf13 genes of Helicobacter pylori is associated with more severe gastric inflammation in Taiwanese,” Journal of the Formosan Medical Association, vol. 101, no. 1, pp. 18–23, 2002. View at Scopus
  22. C. L. Perng, H. J. Lin, W. C. Lo, G. Y. Tseng, I. C. Sun, and Y. H. Ou, “Genotypes of Helicobacter pylori in patients with peptic ulcer bleeding,” World Journal of Gastroenterology, vol. 10, no. 4, pp. 602–605, 2004. View at Scopus
  23. C. Chomvarin, W. Namwat, K. Chaicumpar et al., “Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA and babA2 genotypes in Thai dyspeptic patients,” International Journal of Infectious Diseases, vol. 12, no. 1, pp. 30–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. P. Podzorski, D. S. Podzorski, A. Wuerth, and V. Tolia, “Analysis of the vacA, cagA, cagE, iceA, and babA2 genes in Helicobacter pylori from sixty-one pediatric patients from the Midwestern United States,” Diagnostic Microbiology and Infectious Disease, vol. 46, no. 2, pp. 83–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Kawamura, M. Murakami, O. Araki et al., “Relationship between gastric disease and deletion of cag pathogenicity island genes of Helicobacter pylori in gastric juice,” Digestive Diseases and Sciences, vol. 48, no. 1, pp. 47–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Antonio-Rincón, Y. López-Vidal, G. Castillo-Rojas et al., “Pathogenicity island cag, vacA and IS605 genotypes in Mexican strains of Helicobacter pylori associated with peptic ulcers,” Annals of Clinical Microbiology and Antimicrobials, vol. 10, article 18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. J. Owen, T. M. Peters, R. Varea, E. L. Teare, and S. Saverymuttu, “Molecular epidemiology of Helicobacter pylori in England: prevalence of cag pathogenicity island markers and IS605 presence in relation to patient age and severity of gastric disease,” FEMS Immunology and Medical Microbiology, vol. 30, no. 1, pp. 65–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Kersulyte, N. S. Akopyants, S. W. Clifton, B. A. Roe, and D. E. Berg, “Novel sequence organization and insertion specificity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori,” Gene, vol. 223, no. 1-2, pp. 175–186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. T. L. Stanley, C. D. Ellermeier, and J. M. Slauch, “Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar typhimurium survival in Peyer's patches,” Journal of Bacteriology, vol. 182, no. 16, pp. 4406–4413, 2000. View at Publisher · View at Google Scholar · View at Scopus