About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 528450, 9 pages
http://dx.doi.org/10.1155/2013/528450
Review Article

The Role of Hormonal Factors in Weight Loss and Recidivism after Bariatric Surgery

C-ENDO Endocrinology Centre, Suite 240, 1016-68th Avenue SW, Calgary, AB, Canada T2V 4J2

Received 2 August 2013; Accepted 23 September 2013

Academic Editor: Arya M. Sharma

Copyright © 2013 S. D. Pedersen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Sjöström, K. Narbro, C. D. Sjöström, et al., “Effects of bariatric surgery on mortality in Swedish obese subjects,” New England Journal of Medicine, vol. 357, no. 8, pp. 741–752, 2007.
  2. J. Korner, W. Inabnet, I. M. Conwell et al., “Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels,” Obesity, vol. 14, no. 9, pp. 1553–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Ionut, M. Burch, A. Youdim, and R. N. Bergman, “Gastrointestinal hormones and bariatric surgery-induced weight loss,” Obesity, vol. 21, no. 6, pp. 1093–1103, 2013. View at Publisher · View at Google Scholar
  4. H. Buchwald, R. Estok, K. Fahrbach et al., “Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis,” American Journal of Medicine, vol. 122, no. 3, pp. 248–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Das, S. B. Roberts, M. A. McCrory et al., “Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery 1-4,” American Journal of Clinical Nutrition, vol. 78, no. 1, pp. 22–30, 2003. View at Scopus
  6. L. K. G. Hsu, P. N. Benotti, J. Dwyer et al., “Nonsurgical factors that influence the outcome of bariatric surgery: a review,” Psychosomatic Medicine, vol. 60, no. 3, pp. 338–346, 1998. View at Scopus
  7. S. D. Pedersen, “Impact of newer medications for type 2 diabetes on body weight,” Current Obesity Reports, vol. 2, no. 2, pp. 134–141, 2013. View at Publisher · View at Google Scholar
  8. E. Karra, A. Yousseif, and R. L. Batterham, “Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery,” Trends in Endocrinology and Metabolism, vol. 21, no. 6, pp. 337–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. J. Harvey, K. Arroyo, J. Korner, and W. B. Inabnet, “Hormone changes affecting energy homeostasis after metabolic surgery,” Mount Sinai Journal of Medicine, vol. 77, no. 5, pp. 446–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. J. Neff, D. O’Shea, and C. W. le Roux, “Glucagon like peptide-1 (GLP-1) dynamics following bariatric surgery: a signpost to a new frontier,” Current Diabetes Reviews, vol. 9, pp. 93–101, 2013.
  11. B. Sloth, J. J. Holst, A. Flint, N. T. Gregersen, and A. Astrup, “Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects,” American Journal of Physiology: Endocrinology and Metabolism, vol. 292, no. 4, pp. E1062–E1068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Karra and R. L. Batterham, “The role of gut hormones in the regulation of body weight and energy homeostasis,” Molecular and Cellular Endocrinology, vol. 316, no. 2, pp. 120–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. Cummings, D. S. Weigle, R. Scott Frayo et al., “Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery,” New England Journal of Medicine, vol. 346, no. 21, pp. 1623–1630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zac-Varghese, T. Tan, and S. R. Bloom, “Hormonal interactions between gut and brain,” Discovery Medicine, vol. 10, no. 55, pp. 543–552, 2010. View at Scopus
  15. K. Wynne, A. J. Park, C. J. Small et al., “Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial,” International Journal of Obesity, vol. 30, no. 12, pp. 1729–1736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. K. Phillips and J. B. Prins, “Update on incretin hormones,” Annals of the New York Academy of Sciences, vol. 1243, pp. E55–E74, 2011. View at Publisher · View at Google Scholar
  17. R. S. Rao and S. Kini, “GIP and bariatric surgery,” Obesity Surgery, vol. 21, no. 2, pp. 244–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. L. Baggio and D. J. Drucker, “Biology of Incretins: GLP-1 and GIP,” Gastroenterology, vol. 132, no. 6, pp. 2131–2157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Houten, M. Watanabe, and J. Auwerx, “Endocrine functions of bile acids,” EMBO Journal, vol. 25, no. 7, pp. 1419–1425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Kohli, D. Bradley, K. D. Setchell, J. C. Eagon, N. Abumrad, and S. Klein, “Weight loss induced by Roux-en-Y gatric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids,” Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 4, pp. E708–E127, 2013.
  21. D. J. Pournaras, C. Glicksman, R. P. Vincent, et al., “The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycemic control,” Endocrinology, vol. 153, no. 8, pp. 3613–3619, 2012.
  22. N. N. Ahmad, A. Pfalzer, and L. M. Kaplan, “Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity,” International Journal of Obesity, 2013. View at Publisher · View at Google Scholar
  23. A. Myronovych, M. Kirby, and K. K. Ryan, “Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner,” Obesity, 2013. View at Publisher · View at Google Scholar
  24. M.-E. Patti, S. M. Houten, A. C. Bianco et al., “Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism,” Obesity, vol. 17, no. 9, pp. 1671–1677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Strohacker, J. M. McCaffery, P. S. Maclean, and R. R. Wing, “Adaptations of leptin, ghrelin or insulin during weight loss as predictors of weight regain: a review of current literature,” International Journal of Obesity. View at Publisher · View at Google Scholar
  26. M. Rosenbaum and R. L. Leibel, “Adaptive thermogenesis in humans,” International Journal of Obesity, vol. 34, no. 1, pp. S47–S55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Falçao-Pires, P. Castro-Chaves, D. Miranda-Silva, A. P. Lourenço, and A. F. Leite-Moriera, “Physiological, pathological and potential therapeutic roles of adipokines,” Drug Discovery Today, vol. 17, no. 15-16, pp. 880–889, 2012.
  28. J. Spranger, A. Kroke, M. Möhlig et al., “Adiponectin and protection against type 2 diabetes mellitus,” The Lancet, vol. 361, no. 9353, pp. 226–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. F. M. Silva, J. C. de Almeida, and A. M. Feoli, “Effect of diet on adiponectin levels in blood,” Nutrition Reviews, vol. 69, no. 10, pp. 599–612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Belachew, M. Legrand, V. Vincent et al., “Laparoscopic placement of adjustable silicone gastric band in the treatment of morbid obesity: how to do it,” Obesity Surgery, vol. 5, no. 1, pp. 66–70, 1995. View at Scopus
  31. P. E. O’Brien, L. MacDonald, M. Anderson, L. Brennan, and W. A. Brown, “Long-term outcomes after bariatric surgery: fifteen-year follow-up of adjustable gastric banding and a systematic review of the bariatric surgical literature,” Annals of Surgery, vol. 257, no. 1, pp. 87–94, 2013.
  32. G. Frühbeck, A. Diez Caballero, and M. J. Gil, “Fundus functionality and ghrelin concentrations after bariatric surgery,” New England Journal of Medicine, vol. 350, no. 3, pp. 308–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. F. Carroll, S. F. Franks, A. B. Smith, and D. R. Phelps, “Visceral adipose tissue loss and insulin resistance 6 months after laparoscopic gastric banding surgery: a preliminary study,” Obesity Surgery, vol. 19, no. 1, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Wang and J. Liu, “Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy,” Obesity Surgery, vol. 19, no. 3, pp. 357–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Bose, S. Machineni, B. Oliván et al., “Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding,” Obesity, vol. 18, no. 6, pp. 1085–1091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Korner, W. Inabnet, G. Febres et al., “Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass,” International Journal of Obesity, vol. 33, no. 7, pp. 786–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Korner, M. Bessler, W. Inabnet, C. Taveras, and J. J. Holst, “Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding,” Surgery for Obesity and Related Diseases, vol. 3, no. 6, pp. 597–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. F. R. Dixon, J. B. Dixon, and P. E. O'Brien, “Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 813–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Stoeckli, R. Clianda, I. Langer, and U. Keller, “Changes of body weight and plasma ghrelin levels after gastric banding and gastric bypass,” Obesity Research, vol. 12, no. 2, pp. 346–350, 2004. View at Scopus
  40. A. R. Moschen, C. Molnar, A. M. Wolf et al., “Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression,” Journal of Hepatology, vol. 51, no. 4, pp. 765–777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. M. Hutter, B. D. Schirmer, D. B. Jones et al., “First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass,” Annals of Surgery, vol. 254, no. 3, pp. 410–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. B. Langer, M. A. R. Hoda, A. Bohdjalian et al., “Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels,” Obesity Surgery, vol. 15, no. 7, pp. 1024–1029, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Bohdjalian, F. B. Langer, S. Shakeri-Leiden Mühler et al., “Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin,” Obesity Surgery, vol. 20, no. 5, pp. 535–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Peterli, B. Wölnerhanssen, T. Peters et al., “Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial,” Annals of Surgery, vol. 250, no. 2, pp. 234–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. N. Karamanakos, K. Vagenas, F. Kalfarentzos, and T. K. Alexandrides, “Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study,” Annals of Surgery, vol. 247, no. 3, pp. 401–407, 2008. View at Scopus
  46. F. Romero, J. Nicolau, L. Flores et al., “Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-En-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects,” Surgical Endoscopy, vol. 26, no. 8, pp. 2231–2239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Dimitriadis, M. Daskalakis, M. Kampa, et al., “Alterations in gut hormones after laparoscopic sleeve gastrectomy: a prospective clinical and laboratory investigational study,” Annals of Surgery, vol. 257, no. 4, pp. 647–654, 2013.
  48. D. Haluzíková, Z. Lacinová, P. Kaválková, et al., “Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects,” Obesity, vol. 21, no. 7, pp. 1335–1342, 2013. View at Publisher · View at Google Scholar
  49. D. W. Nelson, K. S. Blair, and M. J. Martin, “Analysis of obesity-related outcomes and bariatric failure rates with the duodenal switch vs gastric bypass for morbid obesity,” Archives of Surgery, vol. 147, no. 9, pp. 847–854, 2012.
  50. S. Evans, Z. Pamuklar, J. Rosko et al., “Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction,” Surgical Endoscopy, vol. 26, no. 4, pp. 1086–1094, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. D. J. Pournaras, A. Osborne, S. C. Hawkins et al., “The gut hormone response following roux-en-Y gastric bypass: cross-sectional and prospective study,” Obesity Surgery, vol. 20, no. 1, pp. 56–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Falkén, P. M. Hellström, J. J. Holst, and E. Näslund, “Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 7, pp. 2227–2235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Laferrère, N. Swerdlow, B. Bawa et al., “Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 8, pp. 4072–4076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. L. Williams, H. J. Grill, D. E. Cummings, and J. M. Kaplan, “Vagotomy dissociates short- and long-term controls of circulating ghrelin,” Endocrinology, vol. 144, no. 12, pp. 5184–5187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. N. B. Jorgensen, S. H. Jacobsen, C. Dirksen, et al., “Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance,” American Journal of Physiology, Endocrinology and Metabolism, vol. 303, no. 1, pp. E122–E131, 2012.
  56. E. N. Hansen, R. A. Tamboli, J. M. Isbell et al., “Role of the foregut in the early improvement in glucose tolerance and insulin sensitivity following Roux-en-Y gastric bypass surgery,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 300, no. 5, pp. G795–G802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Holdstock, B. E. Engström, M. Öhrvall, L. Lind, M. Sundbom, and F. A. Karlsson, “Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3177–3183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Oliván, J. Teixeira, M. Bose et al., “Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels,” Annals of Surgery, vol. 249, no. 6, pp. 948–953, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Á. Larrad-Jiménez, C. Sánchez-Cabezudo Díaz-Guerra, P. De Cuadros Borrajo, I. Bretón Lesmes, and B. Moreno Esteban, “Short-, mid- and long-term results of Larrad biliopancreatic diversion,” Obesity Surgery, vol. 17, no. 2, pp. 202–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Våge, R. Gåsdal, C. Laukeland et al., “The biliopancreatic diversion with a duodenal switch (BPDDS): how is it optimally performed?” Obesity Surgery, vol. 21, no. 12, pp. 1864–1869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Garcia-Fuentes, L. Garrido-Sanchez, J. M. Garcia-Almeida et al., “Different effect of laparoscopic Roux-en-Y gastric bypass and open biliopancreatic diversion of Scopinaro on serum PYY and ghrelin levels,” Obesity Surgery, vol. 18, no. 11, pp. 1424–1429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Tsoli, A. Chronaiou, I. Kehagias, F. Kalfarentzos, and T. K. Alexandrides, “Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study,” Surgery for Obesity and Related Disorders, 2013. View at Publisher · View at Google Scholar
  63. J. Hedberg, H. Hedenström, F. A. Karlsson, B. Edén-Engström, and M. Sundbom, “Gastric emptying and postprandial PYY response after biliopancreatic diversion with duodenal switch,” Obesity Surgery, vol. 21, no. 5, pp. 609–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. T. García-Unzueta, R. Fernández-Santiago, A. Domínguez-Díez, et al., “Fasting plasma ghrelin levels increase progressively after biliopancreatic diversion: one-year follow-up,” Obesity Surgery, vol. 15, pp. 187–190, 2005.
  65. N. G. De La Torre, M. A. Rubio, E. Bordiú et al., “Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4276–4281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Lee, C. Te, S. Koshy, J. A. Teixeira, F. X. Pi-Sunyer, and B. Laferrère, “Does ghrelin really matter after bariatric surgery?” Surgery for Obesity and Related Diseases, vol. 2, no. 5, pp. 538–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Salani, L. Briatore, G. Andraghetti, G. F. Adami, D. Maggi, and R. Cordera, “High-molecular weight adiponectin isoforms increase after biliopancreatic diversion in obese subjects,” Obesity, vol. 14, no. 9, pp. 1511–1514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. D. O. Magro, B. Geloneze, R. Delfini, B. C. Pareja, F. Callejas, and J. C. Pareja, “Long-term weight regain after gastric bypass: a 5-year prospective study,” Obesity Surgery, vol. 18, no. 6, pp. 648–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Biron, F.-S. Hould, S. Lebel et al., “Twenty years of biliopancreatic diversion: what is the goal of the surgery?” Obesity Surgery, vol. 14, no. 2, pp. 160–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Busetto, G. Segato, M. De Luca et al., “High ghrelin concentration is not a predictor of less weight loss in morbidly obese women treated with laparoscopic adjustable gastric banding,” Obesity Surgery, vol. 16, no. 8, pp. 1068–1074, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. I. Mechanick, A. Youdim, D. B. Jones, et al., “Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient,” Endocrine Practice, vol. 21, supplement 1, pp. S1–S27, 2013.
  72. R. Morínigo, J. Vidal, A. M. Lacy, S. Delgado, R. Casamitjana, and R. Gomis, “Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects,” Annals of Surgery, vol. 247, no. 2, pp. 270–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. C. W. Le Roux, R. Welbourn, M. Werling et al., “Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass,” Annals of Surgery, vol. 246, no. 5, pp. 780–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Stylopoulos, P. Davis, J. D. Pettit, D. W. Rattner, and L. M. Kaplan, “Changes in serum ghrelin predict weight loss after Roux-en-Y gastric bypass in rats,” Surgical Endoscopy and Other Interventional Techniques, vol. 19, no. 7, pp. 942–946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. E. M. Changchien, S. Ahmed, F. Betti et al., “B-type natriuretic peptide increases after gastric bypass surgery and correlates with weight loss,” Surgical Endoscopy and Other Interventional Techniques, vol. 25, no. 7, pp. 2338–2343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. L.-C. Chang, K.-C. Huang, Y.-W. Wu et al., “The clinical implications of blood adiponectin in cardiometabolic disorders,” Journal of the Formosan Medical Association, vol. 108, no. 5, pp. 353–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Sjöström, A.-K. Lindroos, M. Peltonen et al., “Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery,” New England Journal of Medicine, vol. 351, no. 26, pp. 2683–2693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. M. M. Meguid, M. J. Glade, and F. A. Middleton, “Weight regain after Roux-en-Y: a significant 20% complication related to PYY,” Nutrition, vol. 24, no. 9, pp. 832–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Guijarro, S. Suzuki, C. Chen et al., “Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 293, no. 4, pp. R1474–R1489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. A. D. Miras and C. W. le Roux, “Bariatric surgery and taste: novel mechanisms of weight loss,” Current Opinion in Gastroenterology, vol. 26, no. 2, pp. 140–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. A. D. Miras, R. N. Jackson, S. N. Jackson, et al., “Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task,” American Journal of Clinical Nutrition, vol. 96, no. 3, pp. 467–473, 2012.
  82. D. Papamargaritis, E. Panteliou, A. D. Miras, and C. W. le Roux, “Mechanisms of weight loss, diabetes control and changes in food choices after gastrointestinal surgery,” Current Atherosclerosis Reports, vol. 14, no. 6, pp. 616–623, 2012.