About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 681439, 18 pages
http://dx.doi.org/10.1155/2013/681439
Review Article

Screening for Precancerous Lesions of Upper Gastrointestinal Tract: From the Endoscopists' Viewpoint

1Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Chung-Shan South Road, Taipei 100, Taiwan
2Department of Internal Medicine, Far Eastern Memorial Hospital, Banciao District, New Taipei City, Taiwan

Received 3 November 2012; Accepted 19 February 2013

Academic Editor: Fayez Sandouk

Copyright © 2013 Chen-Shuan Chung and Hsiu-Po Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. B. Bolye, World Cancer Report, IARC Press, Lyon, France, 2008.
  2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. K. K. Wang and R. E. Sampliner, “Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett's esophagus,” American Journal of Gastroenterology, vol. 103, no. 3, pp. 788–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Theisen, H. J. Stein, H. J. Dittler et al., “Preoperative chemotherapy unmasks underlying Barrett's mucosa in patients with adenocarcinoma of the distal esophagus,” Surgical Endoscopy and Other Interventional Techniques, vol. 16, no. 4, pp. 671–673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Hvid-Jensen, L. Pedersen, A. M. Drewes, H. T. Sørensen, and P. Funch-Jensen, “Incidence of adenocarcinoma among patients with Barrett's esophagus,” The New England Journal of Medicine, vol. 365, no. 15, pp. 1375–1383, 2011. View at Publisher · View at Google Scholar
  6. J. L. Whiting, A. Sigurdsson, D. C. Rowlands, M. T. Hallissey, and J. W. L. Fielding, “The long term results of endoscopic surveillance of premalignant gastric lesions,” Gut, vol. 50, no. 3, pp. 378–381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Everett and A. T. R. Axon, “Early gastric cancer in Europe,” Gut, vol. 41, no. 2, pp. 142–150, 1997. View at Scopus
  8. M. Kodama and T. Kakegawa, “Treatment of superficial cancer of the esophagus: a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan,” Surgery, vol. 123, no. 4, pp. 432–439, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Takubo, J. Aida, M. Sawabe et al., “Early squamous cell carcinoma of the oesophagus: the Japanese viewpoint,” Histopathology, vol. 51, no. 6, pp. 733–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Gotoda, A. Yanagisawa, M. Sasako et al., “Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers,” Gastric Cancer, vol. 3, no. 4, pp. 219–225, 2000. View at Scopus
  11. T. Hirasawa, T. Gotoda, S. Miyata et al., “Incidence of lymph node metastasis and the feasibility of endoscopic resection for undifferentiated-type early gastric cancer,” Gastric Cancer, vol. 12, no. 3, pp. 148–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tada, M. Shimada, and F. Murakami, “Development of the strip-off biopsy,” Gastroenterological Endoscopy, vol. 26, no. 6, pp. 833–839, 1984. View at Scopus
  13. T. Gotoda, “Endoscopic resection of early gastric cancer,” Gastric Cancer, vol. 10, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Inoue, K. Takeshita, H. Hori, Y. Muraoka, H. Yoneshima, and M. Endo, “Endoscopic mucosal resection with a cap-fitted panendoscope for esophagus, stomach, and colon mucosal lesions,” Gastrointestinal Endoscopy, vol. 39, no. 1, pp. 58–62, 1993. View at Scopus
  15. M. Akiyama, M. Ota, H. Nakajima, K. Yamagata, and A. Munakata, “Endoscopic mucosal resection of gastric neoplasms using a ligating device,” Gastrointestinal Endoscopy, vol. 45, no. 2, pp. 182–186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Oyama, A. Tomori, K. Hotta et al., “Endoscopic submucosal dissection of early esophageal cancer,” Clinical Gastroenterology and Hepatology, vol. 3, no. 7, pp. S67–S70, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kato, “Endoscopic submucosal dissection (ESD) is being accepted as a new procedure of endoscopic treatment of early gastric cancer,” Internal Medicine, vol. 44, no. 2, pp. 85–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lian, S. Chen, Y. Zhang, and F. Qiu, “A meta-analysis of endoscopic submucosal dissection and EMR for early gastric cancer,” Gastrointestinal Endoscopy, vol. 76, no. 4, pp. 763–770, 2012. View at Publisher · View at Google Scholar
  19. T. Kaltenbach, Y. Sano, S. Friedland, and R. Soetikno, “American Gastroenterological Association (AGA) Institute technology assessment on image-enhanced endoscopy,” Gastroenterology, vol. 134, no. 1, pp. 327–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Gono, T. Obi, M. Yamaguchi et al., “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” Journal of Biomedical Optics, vol. 9, no. 3, pp. 568–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Okuyama, M. Ohata, H. Orimo, T. Fujita, and M. Yoshikawa, “FGS-ML,” Gastrointestinal Endoscopy, vol. 9, pp. 42–43, 1967.
  22. M. Muto, T. Horimatsu, Y. Ezoe, S. Morita, and S. Miyamoto, “Improving visualization techniques by narrow band imaging and magnification endoscopy,” Journal of Gastroenterology and Hepatology, vol. 24, no. 8, pp. 1333–1346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. B. Nelson, K. P. Block, J. J. Bosco et al., “High resolution and high-magnification endoscopy,” Gastrointestinal Endoscopy, vol. 52, no. 6, pp. 864–866, 2000. View at Scopus
  24. T. Yoshida, H. Inoue, S. Usui, H. Satodate, N. Fukami, and S. E. Kudo, “Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions,” Gastrointestinal Endoscopy, vol. 59, no. 2, pp. 288–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Kubo and M. A. Fujino, “Ultra-high magnification endoscopy of the normal esophageal mucosa,” Gastrointestinal Endoscopy, vol. 46, no. 1, pp. 96–97, 1997. View at Scopus
  26. J. Pohl, A. May, T. Rabenstein, O. Pech, and C. Ell, “Computed virtual chromoendoscopy: a new tool for enhancing tissue surface structures,” Endoscopy, vol. 39, no. 1, pp. 80–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Inoue, Y. Miyake, T. Odaka et al., “Objective evaluation of visibility in virtual chromoendoscopy for esophageal squamous carcinoma using a color difference formula,” Journal of Biomedical Optics, vol. 15, no. 5, Article ID 056019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. W. Jung, K. S. Lim, J. U. Lim, et al., “Flexible spectral imaging color enhancement (FICE) is useful to discriminate among non-neoplastic lesion, adenoma, and cancer of stomach,” Digestive Diseases and Sciences, vol. 56, no. 10, pp. 2879–2886, 2011. View at Publisher · View at Google Scholar
  29. N. Uedo, H. Iishi, M. Tatsuta et al., “A novel videoendoscopy system by using autofluorescence and reflectance imaging for diagnosis of esophagogastric cancers,” Gastrointestinal Endoscopy, vol. 62, no. 4, pp. 521–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Haringsma, G. N. J. Tytgat, H. Yano et al., “Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology,” Gastrointestinal Endoscopy, vol. 53, no. 6, pp. 642–650, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Liu, Y. Q. Li, T. Yu et al., “Confocal endomicroscopy for in vivo detection of microvascular architecture in normal and malignant lesions of upper gastrointestinal tract,” Journal of Gastroenterology and Hepatology, vol. 23, no. 1, pp. 56–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology, vol. 136, no. 5, pp. 1509–1513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. S. Kwon, L. M. Wong Kee Song, D. G. Adler et al., “Endocytoscopy,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 610–613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Inoue, S. E. Kudo, and A. Shiokawa, “Technology insight: laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 2, no. 1, pp. 31–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Neumann, F. S. Fuchs, M. Vieth et al., “Review article: in vivo imaging by endocytoscopy,” Alimentary Pharmacology and Therapeutics, vol. 33, no. 11, pp. 1183–1193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. V. Sivak, K. Kobayashi, J. A. Izatt et al., “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointestinal Endoscopy, vol. 51, no. 4, pp. 474–479, 2000. View at Scopus
  37. G. Zuccaro, N. Gladkova, J. Vargo et al., “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” American Journal of Gastroenterology, vol. 96, no. 9, pp. 2633–2639, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Y. Cho, J. Y. Jang, and D. H. Lee, “Recent advances in image-enhanced endoscopy,” Clinical Endoscopy, vol. 44, no. 2, pp. 65–75, 2011. View at Publisher · View at Google Scholar
  39. S. Kodashima and M. Fujishiro, “Novel image-enhanced endoscopy with i-scan technology,” World Journal of Gastroenterology, vol. 16, no. 9, pp. 1043–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Kida, K. Kobayashi, and K. Saigenji, “Routine chromoendoscopy for gastrointestinal diseases: indications revised,” Endoscopy, vol. 35, no. 7, pp. 590–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Toriie, Y. Akasaka, and K. Yamaguchi, “New trial for endoscopical observation of esophagus by dye spraying method,” GEN, vol. 30, no. 3-4, pp. 159–165, 1976. View at Scopus
  42. Y. Shimizu, T. Omori, A. Yokoyama et al., “Endoscopic diagnosis of early squamous neoplasia of the esophagus with iodine staining: high-grade intra-epithelial neoplasia turns pink within a few minutes,” Journal of Gastroenterology and Hepatology, vol. 23, no. 4, pp. 546–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Kondo, H. Fukuda, H. Ono et al., “Sodium thiosulfate solution spray for relief of irritation caused by Lugol's stain in chromoendoscopy,” Gastrointestinal Endoscopy, vol. 53, no. 2, pp. 199–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Longcroft-Wheaton, M. Duku, R. Mead, D. Poller, and P. Bhandari, “Acetic acid spray is an effective tool for the endoscopic detection of neoplasia in patients with barrett's esophagus,” Clinical Gastroenterology and Hepatology, vol. 8, no. 10, pp. 843–847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. R. Olliver, C. P. Wild, P. Sahay, S. Dexter, and L. J. Hardie, “Chromoendoscopy with methylene blue and associated DNA damage in Barrett's oesophagus,” The Lancet, vol. 362, no. 9381, pp. 373–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Dinis-Ribeiro and L. Moreira-Dias, “There is no clinical evidence of consequences after methylene blue chromoendoscopy,” Gastrointestinal Endoscopy, vol. 67, no. 7, p. 1209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. C. S. Chung, Y. C. Lee, C. P. Wang et al., “Secondary prevention of esophageal squamous cell carcinoma in areas where smoking, alcohol, and betel quid chewing are prevalent,” Journal of the Formosan Medical Association, vol. 109, no. 6, pp. 408–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. T. Lee, C. Y. Chang, Y. C. Lee et al., “Narrow-band imaging with magnifying endoscopy for the screening of esophageal cancer in patients with primary head and neck cancers,” Endoscopy, vol. 42, no. 8, pp. 613–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. C. Lee, C. P. Wang, C. C. Chen et al., “Transnasal endoscopy with narrow-band imaging and Lugol staining to screen patients with head and neck cancer whose condition limits oral intubation with standard endoscope (with video),” Gastrointestinal Endoscopy, vol. 69, no. 3, pp. 408–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Inoue, T. Honda, K. Nagai et al., “Ultra-high magnification endoscopic observation of carcinoma in situ of the esophagus,” Digestive Endoscopy, vol. 9, no. 1, pp. 16–18, 1997. View at Scopus
  51. N. Uedo, M. Fujishiro, K. Goda et al., “Role of narrow band imaging for diagnosis of early-stage esophagogastric cancer: current consensus of experienced endoscopists in Asia-Pacific region,” Digestive Endoscopy, vol. 23, no. 1, pp. 58–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Ishihara, T. Inoue, N. Uedo et al., “Significance of each narrow-band imaging finding in diagnosing squamous mucosal high-grade neoplasia of the esophagus,” Journal of Gastroenterology and Hepatology, vol. 25, no. 8, pp. 1410–1415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Inoue, “Endoscopic diagnosis of tissue atypism (EA) in the pharyngeal and esophageal squamous epithelium; IPCL pattern classification and ECA classification,” Kyobu Geka, vol. 60, no. 8, pp. 768–775, 2007. View at Scopus
  54. Y. Kumagai, H. Inoue, K. Nagai, T. Kawano, and T. Iwai, “Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma,” Endoscopy, vol. 34, no. 5, pp. 369–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Arima, M. Tada, and H. Arima, “Evaluation of microvascular patterns of superficial esophageal cancers by magnifying endoscopy,” Esophagus, vol. 2, no. 4, pp. 191–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. G. K. Anagnostopoulos, K. Yao, P. Kaye, C. J. Hawkey, and K. Ragunath, “Novel endoscopic observation in Barrett's oesophagus using high resolution magnification endoscopy and narrow band imaging,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 3, pp. 501–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Singh, G. K. Anagnostopoulos, K. Yao et al., “Narrow-band imaging with magnification in Barrett's esophagus: validation of a simplified grading system of mucosal morphology patterns against histology,” Endoscopy, vol. 40, no. 6, pp. 457–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Mannath, V. Subramanian, C. J. Hawkey, and K. Ragunath, “Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barretts esophagus: a meta-analysis,” Endoscopy, vol. 42, no. 5, pp. 351–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Oka, Y. Amano, R. Kusunoki et al., “Superficial esophageal cancer observed with the PillCam ESO 2 in combination with the flexible spectral imaging color enhancement system,” Digestive Endoscopy, vol. 23, no. 2, pp. 195–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Osawa, H. Yamamoto, N. Yamada et al., “Diagnosis of endoscopic Barrett's esophagus by transnasal flexible spectral imaging color enhancement,” Journal of Gastroenterology, vol. 44, no. 11, pp. 1125–1132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Pohl, A. May, T. Rabenstein et al., “Comparison of computed virtual chromoendoscopy and conventional chromoendoscopy with acetic acid for detection of neoplasia in Barrett's esophagus,” Endoscopy, vol. 39, no. 7, pp. 594–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Yoshida, K. Goda, H. Tajiri, M. Urashima, N. Yoshimura, and T. Kato, “Assessment of novel endoscopic techniques for visualizing superficial esophageal squamous cell carcinoma: autofluorescence and narrow-band imaging,” Diseases of the Esophagus, vol. 22, no. 5, pp. 439–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Ishihara, T. Inoue, N. Hanaoka, et al., “Autofluorescence imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia: a phase II study,” Journal of Gastroenterology and Hepatology, vol. 27, no. 1, pp. 86–90, 2012. View at Publisher · View at Google Scholar
  64. M. Panjehpour, B. F. Overholt, T. Vo-Dinh, R. C. Haggitt, D. H. Edwards, and F. P. I. Buckley, “Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus,” Gastroenterology, vol. 111, no. 1, pp. 93–101, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Brand, T. D. Wang, K. T. Schomacker et al., “Detection of high-grade dysplasia in Barrett's esophagus by spectroscopy measurement of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence,” Gastrointestinal Endoscopy, vol. 56, no. 4, pp. 479–487, 2002. View at Scopus
  66. M. A. Kara, F. P. Peters, P. Fockens, F. J. W. ten Kate, and J. J. G. H. M. Bergman, “Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett's esophagus,” Gastrointestinal Endoscopy, vol. 64, no. 2, pp. 176–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. W. L. Curvers, L. A. Herrero, M. B. Wallace et al., “Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett's esophagus,” Gastroenterology, vol. 139, no. 4, pp. 1106–e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. W. L. Curvers, R. Singh, L. M. W. K. Song et al., “Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system,” Gut, vol. 57, no. 2, pp. 167–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. W. L. Curvers, F. G. Van Vilsteren, L. C. Baak et al., “Endoscopic trimodal imaging versus standard video endoscopy for detection of early Barrett's neoplasia: a multicenter, randomized, crossover study in general practice,” Gastrointestinal Endoscopy, vol. 73, no. 2, pp. 195–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Liu, Y. Q. Li, T. Yu et al., “Confocal laser endomicroscopy for superficial esophageal squamous cell carcinoma,” Endoscopy, vol. 41, no. 2, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. O. Pech, T. Rabenstein, H. Manner et al., “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clinical Gastroenterology and Hepatology, vol. 6, no. 1, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Inoue, K. Sasajima, M. Kaga et al., “Endoscopic in vivo evaluation of tissue atypia in the esophagus using a newly designed intergrated endocytoscope: a pilot trial,” Endoscopy, vol. 38, no. 9, pp. 891–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Kumagai, K. Kawada, S. Yamazaki et al., “Endocytoscopic observation for esophageal squamous cell carcinoma: can biopsy histology be omitted?” Diseases of the Esophagus, vol. 22, no. 6, pp. 505–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Fujishiro, K. Takubo, Y. Sato et al., “Potential and present limitation of endocytoscopy in the diagnosis of esophageal squamous-cell carcinoma: a multicenter ex vivo pilot study,” Gastrointestinal Endoscopy, vol. 66, no. 3, pp. 551–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Kiesslich, L. Gossner, M. Goetz et al., “In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy,” Clinical Gastroenterology and Hepatology, vol. 4, no. 8, pp. 979–987, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. K. B. Dunbar, P. Okolo, E. Montgomery, and M. I. Canto, “Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Sharma, A. R. Meining, E. Coron, et al., “Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial,” Gastrointestinal Endoscopy, vol. 74, no. 3, pp. 465–472, 2011. View at Publisher · View at Google Scholar
  78. M. Wallace, G. Y. Lauwers, Y. Chen, et al., “Miami classification for probe-based confocal laser endomicroscopy,” Endoscopy, vol. 43, no. 10, pp. 882–891, 2011. View at Publisher · View at Google Scholar
  79. M. Bajbouj, M. Vieth, T. Rösch et al., “Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barretts esophagus,” Endoscopy, vol. 42, no. 6, pp. 435–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Bertani, M. Frazzoni, E. Dabizzi, et al., “Improved detection of incident dysplasia by probe-based confocal laser endomicroscopy in a Barrett's esophagus surveillance program,” Digestive Diseases and Sciences, vol. 58, no. 1, pp. 188–193, 2012. View at Publisher · View at Google Scholar
  81. H. Pohl, M. Koch, A. Khalifa et al., “Evaluation of endocytoscopy in the surveillance of patients with Barrett's esophagus,” Endoscopy, vol. 39, no. 6, pp. 492–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Hatta, K. Uno, T. Koike et al., “Optical coherence tomography for the staging of tumor infiltration in superficial esophageal squamous cell carcinoma,” Gastrointestinal Endoscopy, vol. 71, no. 6, pp. 899–906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Hatta, K. Uno, T. Koike, et al., “A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma,” Gastrointestinal Endoscopy, vol. 76, no. 3, pp. 548–555, 2012. View at Publisher · View at Google Scholar
  84. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,” Gastroenterology, vol. 120, no. 1, pp. 7–12, 2001. View at Scopus
  85. G. Isenberg, M. V. Sivak, A. Chak et al., “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study,” Gastrointestinal Endoscopy, vol. 62, no. 6, pp. 825–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Qi, Y. Pan, M. V. Sivak, J. E. Willis, G. Isenberg, and A. M. Rollins, “Image analysis for classification of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express, vol. 1, no. 3, pp. 825–847, 2010.
  87. T.-H. Tsai, C. Zhou, H.-C. Lee, et al., “Comparison of tissue architectural changes between radiofrequency ablation and cryospray ablation in Barrett's esophagus using endoscopic three-dimensional optical coherence tomography,” Gastroenterology Research and Practice, vol. 2012, Article ID 684832, 8 pages, 2012. View at Publisher · View at Google Scholar
  88. A. Hoffman, N. Basting, M. Goetz et al., “High-definition endoscopy with i-Scan and Lugol's solution for more precise detection of mucosal breaks in patients with reflux symptoms,” Endoscopy, vol. 41, no. 2, pp. 107–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. S. Kim, S. R. Choi, M. H. Roh, et al., “Efficacy of I-scan endoscopy in the diagnosis of gastroesophageal reflux disease with minimal change,” Clinical Endoscopy, vol. 44, no. 1, pp. 27–32, 2011. View at Publisher · View at Google Scholar
  90. S. M. Dawsey, D. E. Fleischer, G. Q. Wang, et al., “Mucosal iodine staining improves endoscopic visualization of squamous dysplasia and squamous cell carcinoma of the esophagus in Linxian, China,” Cancer, vol. 83, no. 2, pp. 220–231, 1998.
  91. M. I. F. Canto, S. Setrakian, R. E. Petras, E. Blades, A. Chak, and M. Sivak, “Methylene blue selectively stains intestinal metaplasia in Barrett's esophagus,” Gastrointestinal Endoscopy, vol. 44, no. 1, pp. 1–7, 1996. View at Scopus
  92. R. Kiesslich, M. Hahn, G. Herrmann, and M. Jung, “Screening for specialized columnar epithelium with methylene blue: chromoendoscopy in patients with Barrett's esophagus and a normal control group,” Gastrointestinal Endoscopy, vol. 53, no. 1, pp. 47–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Endo, T. Awakawa, H. Takahashi et al., “Classification of Barrett's epithlium by magnifying endoscopy,” Gastrointestinal Endoscopy, vol. 55, no. 6, pp. 641–647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Ragunath, N. Krasner, V. S. Raman, M. T. Haqqani, and W. Y. Cheung, “A randomized, prospective cross-over trial comparing methylene blue-directed biopsy and conventional random biopsy for detecting intestinal metaplasia and dysplasia in Barrett's esophagus,” Endoscopy, vol. 35, no. 12, pp. 998–1003, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Ngamruengphong, V. K. Sharma, and A. Das, “Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett's esophagus: a meta-analysis,” Gastrointestinal Endoscopy, vol. 69, no. 6, pp. 1021–1028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Hoffman, R. Kiesslich, A. Bender et al., “Acetic acid-guided biopsies after magnifying endoscopy compared with random biopsies in the detection of Barrett's esophagus: a prospective randomized trial with crossover design,” Gastrointestinal Endoscopy, vol. 64, no. 1, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. P. J. Fortun, G. K. Anagnostopoulos, P. Kaye et al., “Acetic acid-enhanced magnification endoscopy in the diagnosis of specialized intestinal metaplasia, dysplasia and early cancer in Barrett's oesophagus,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 6, pp. 735–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. J. L. Vázquez-Iglesias, P. Alonso-Aguirre, M. T. Diz-Lois, M. A. Vázquez-Millán, A. Álvarez, and M. J. Lorenzo, “Acetic acid allows effective selection of areas for obtaining biopsy samples in Barrett's esophagus,” European Journal of Gastroenterology and Hepatology, vol. 19, no. 3, pp. 187–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. A. A. Alaboudy, A. Elbahrawy, S. Matsumoto, and A. Yoshizawa, “Conventional narrow-band imaging has good correlation with histopathological severity of Helicobacter pylori gastritis,” Digestive Diseases and Sciences, vol. 56, no. 4, pp. 1127–1130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. G. K. Anagnostopoulos, K. Yao, P. Kaye et al., “High-resolution magnification endoscopy can reliably identify normal gastric mucosa, Helicobacter pylori-associated gastritis, and gastric atrophy,” Endoscopy, vol. 39, no. 3, pp. 202–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Tahara, T. Shibata, M. Nakamura et al., “Gastric mucosal pattern by using magnifying narrow-band imaging endoscopy clearly distinguishes histological and serological severity of chronic gastritis,” Gastrointestinal Endoscopy, vol. 70, no. 2, pp. 246–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Yagi, A. Nakamura, and A. Sekine, “Comparison between magnifying endoscopy and histological, culture and urease test findings from the gastric mucosa of the corpus,” Endoscopy, vol. 34, no. 5, pp. 376–381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. M. M. Walker, “Is intestinal metaplasia of the stomach reversible?” Gut, vol. 52, no. 1, pp. 1–4, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. N. Uedo, R. Ishihara, H. Iishi et al., “A new method of diagnosing gastric intestinal metaplasia: narrow-band imaging with magnifying endoscopy,” Endoscopy, vol. 38, no. 8, pp. 819–824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Pimentel-Nunes, M. Dinis-Ribeiro, J. B. Soares, et al., “A multicenter validation of an endoscopic classification with narrow band imaging for gastric precancerous and cancerous lesions,” Endoscopy, vol. 44, no. 3, pp. 236–246, 2012. View at Publisher · View at Google Scholar
  106. Y. Otsuka, Y. Niwa, N. Ohmiya et al., “Usefulness of magnifying endoscopy in the diagnosis of early gastric cancer,” Endoscopy, vol. 36, no. 2, pp. 165–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Nakayoshi, H. Tajiri, K. Matsuda, M. Kaise, M. Ikegami, and H. Sasaki, “Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology,” Endoscopy, vol. 36, no. 12, pp. 1080–1084, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Kaise, M. Kato, M. Urashima et al., “Magnifying endoscopy combined with narrow-band imaging for differential diagnosis of superficial depressed gastric lesions,” Endoscopy, vol. 41, no. 4, pp. 310–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Yao, G. K. Anagnostopoulos, and K. Ragunath, “Magnifying endoscopy for diagnosing and delineating early gastric cancer,” Endoscopy, vol. 41, no. 5, pp. 462–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Yao, A. Iwashita, H. Tanabe et al., “White opaque substance within superficial elevated gastric neoplasia as visualized by magnification endoscopy with narrow-band imaging: a new optical sign for differentiating between adenoma and carcinoma,” Gastrointestinal Endoscopy, vol. 68, no. 3, pp. 574–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Mouri, S. Yoshida, S. Tanaka, S. Oka, M. Yoshihara, and K. Chayama, “Evaluation and validation of computed virtual chromoendoscopy in early gastric cancer,” Gastrointestinal Endoscopy, vol. 69, no. 6, pp. 1052–1058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Osawa, H. Yamamoto, Y. Miura, et al., “Diagnosis of extent of early gastric cancer using flexible spectral imaging color enhancement,” World Journal of Gastrointestinal Endoscopy, vol. 16, no. 4, pp. 356–361, 2012. View at Publisher · View at Google Scholar
  113. A. Ohkawa, H. Miwa, A. Namihisa et al., “Diagnostic performance of light-induced fluorescence endoscopy for gastric neoplasms,” Endoscopy, vol. 36, no. 6, pp. 515–521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Hanaoka, N. Uedo, A. Shiotani et al., “Autofluorescence imaging for predicting development of metachronous gastric cancer after Helicobacter pylori eradication,” Journal of Gastroenterology and Hepatology, vol. 25, no. 12, pp. 1844–1849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. J. H. Lee, J. Y. Cho, M. G. Choi, et al., “Usefulness of autofluorescence imaging for estimating the extent of gastric neoplastic lesions: a prospective multicenter study,” Gut Liver, vol. 2, no. 3, pp. 174–179, 2008. View at Publisher · View at Google Scholar
  116. R. Kiesslich, M. Goetz, J. Burg et al., “Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy,” Gastroenterology, vol. 128, no. 7, pp. 2119–2123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Ji, Y. Q. Li, X. M. Gu, T. Yu, X. L. Zuo, and C. J. Zhou, “Confocal laser endomicroscopy for diagnosis of Helicobacter pylori infection: a prospective study,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 700–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Wang, R. Ji, T. Yu et al., “Classification of histological severity of Helicobacter pylori - associated gastritis by confocal laser endomicroscopy,” World Journal of Gastroenterology, vol. 16, no. 41, pp. 5203–5210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. T. Guo, Y. Q. Li, T. Yu et al., “Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study,” Endoscopy, vol. 40, no. 7, pp. 547–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. W. B. Li, X. L. Zuo, C. Q. Li et al., “Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions,” Gut, vol. 60, no. 3, pp. 299–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Kakeji, S. Yamaguchi, D. Yoshida et al., “Development and assessment of morphologic criteria for diagnosing gastric cancer using confocal endomicroscopy: an ex vivo and in vivo study,” Endoscopy, vol. 38, no. 9, pp. 886–890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Kitabatake, Y. Niwa, R. Miyahara et al., “Confocal endomicroscopy for the diagnosis of gastric cancer in vivo,” Endoscopy, vol. 38, no. 11, pp. 1110–1114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. S. R. Jeon, W. Y. Cho, S. Y. Jin, Y. K. Cheon, S. R. Choi, and J. Y. Cho, “. Optical biopsies by confocal endomicroscopy prevent additive endoscopic biopsies before endoscopic submucosal dissection in gastric epithelial neoplasias: a prospective, comparative study,” Gastrointestinal Endoscopy, vol. 74, no. 4, pp. 772–780, 2011.
  124. T. Eberl, G. Jechart, A. Probst et al., “Can an endocytoscope system (ECS) predict histology in neoplastic lesions?” Endoscopy, vol. 39, no. 6, pp. 497–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Fasoli, V. Pugliese, M. Furnari, B. Gatteschi, M. Truini, and E. Meroni, “Signet ring cell carcinoma of the stomach: correlation between endocytoscopy and histology,” Endoscopy, vol. 41, pp. E65–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Okabayashi, T. Gotoda, H. Kondo et al., “Usefulness of indigo carmine chromoendoscopy and endoscopic clipping for accurate preoperative assessment of proximal gastric cancer,” Endoscopy, vol. 32, no. 10, p. S62, 2000. View at Scopus
  127. K. Ida, Y. Hashimoto, and S. Takeda, “Endoscopic diagnosis of gastric cancer with dye scattering,” American Journal of Gastroenterology, vol. 63, no. 4, pp. 316–320, 1975. View at Scopus
  128. K. Yagi, Y. Aruga, A. Nakamura, A. Sekine, and H. Umezu, “The study of dynamic chemical magnifying endoscopy in gastric neoplasia CME,” Gastrointestinal Endoscopy, vol. 62, no. 6, pp. 963–969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. K. Tanaka, H. Toyoda, S. Kadowaki et al., “Features of early gastric cancer and gastric adenoma by enhanced-magnification endoscopy,” Journal of Gastroenterology, vol. 41, no. 4, pp. 332–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Areia, P. Amaro, M. Dinis-Ribeiro et al., “External validation of a classification for methylene blue magnification chromoendoscopy in premalignant gastric lesions,” Gastrointestinal Endoscopy, vol. 67, no. 7, pp. 1011–1018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. M. Dinis-Ribeiro, A. da Costa-Pereira, C. Lopes et al., “Magnification chromoendoscopy for the diagnosis of gastric intestinal metaplasia and dysplasia,” Gastrointestinal Endoscopy, vol. 57, no. 4, pp. 498–504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. E. Toth, K. Sjolund, F. T. Fork, and C. Lindstrom, “Chronic atrophic fundic gastritis diagnosed by a modified Congo red test,” Endoscopy, vol. 27, no. 9, pp. 654–658, 1995. View at Scopus
  133. H. Iishi, M. Tatsuta, and S. Okuda, “Diagnosis of simultaneous multiple gastric cancers by the endoscopic Congo red—methylene blue test,” Endoscopy, vol. 20, no. 2, pp. 78–82, 1988. View at Scopus