About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2013 (2013), Article ID 782581, 12 pages
http://dx.doi.org/10.1155/2013/782581
Research Article

Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma

1Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
2Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China
3School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, China

Received 30 July 2013; Accepted 27 August 2013

Academic Editor: Qiang Xia

Copyright © 2013 Guang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Bruix and M. Sherman, “Management of hepatocellular carcinoma: an update,” Hepatology, vol. 53, no. 3, pp. 1020–1022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Forner, M. E. Reig, C. Rodriguez de Lope, and J. Bruix, “Current strategy for staging and treatment: the BCLC update and future prospects,” Seminars in Liver Disease, vol. 30, no. 1, pp. 61–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Forner, J. M. Llovet, and J. Bruix, “Hepatocellular carcinoma,” The Lancet, vol. 379, no. 9822, pp. 1245–1255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. T. Jordan, M. L. Guzman, and M. Noble, “Cancer stem cells,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1253–1261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Magee, E. Piskounova, and S. J. Morrison, “Cancer stem cells: impact, heterogeneity, and uncertainty,” Cancer Cell, vol. 21, no. 3, pp. 283–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. W. Hamburger and S. E. Salmon, “Primary bioassay of human tumor stem cells,” Science, vol. 197, no. 4302, pp. 461–463, 1977. View at Scopus
  8. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. F. Yang, D. W. Ho, M. N. Ng et al., “Significance of CD90+ cancer stem cells in human liver cancer,” Cancer Cell, vol. 13, no. 2, pp. 153–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. L. Abbott, A.-M. Colapietro, Y. Barnes, F. Marini, M. Andreeff, and B. P. Sorrentino, “Low levels of ABCG2 expression in adult AML blast samples,” Blood, vol. 100, no. 13, pp. 4594–4601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Zhou, J. D. Schuetz, K. D. Bunting et al., “The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype,” Nature Medicine, vol. 7, no. 9, pp. 1028–1034, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Chiba, K. Kita, Y.-W. Zheng et al., “Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties,” Hepatology, vol. 44, no. 1, pp. 240–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zhou, J. J. Morris, Y. Barnes, L. Lan, J. D. Schuetz, and B. P. Sorrentino, “Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12339–12344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. E. Salmon, A. W. Hamburger, and B. Soehnlen, “Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs,” The New England Journal of Medicine, vol. 298, no. 24, pp. 1321–1327, 1978. View at Scopus
  16. Q. Jia, X. Zhang, T. Deng, et al., “Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells,” Cellular Reprogramming, vol. 15, no. 2, pp. 143–150, 2013.
  17. C. Shi, R. Tian, M. Wang et al., “CD44+ CD133+ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma,” Cancer Biology & Therapy, vol. 10, no. 11, pp. 1182–1190, 2010. View at Scopus
  18. G. H. Qiang, D. C. Yu, X. W. Ding, et al., “Expression of ABCG2 in human liver cancer cell lines and its related functions,” Chinese Journal, vol. 19, pp. 146–150, 2012.
  19. L. H. Sobin and C. H. Wittekind, TNM Classification of Malignant Tumors, Wiley-Blackwell, New York, NY, USA, 6th edition, 2002.
  20. V. Mazzaferro, E. Regalia, R. Doci et al., “Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis,” The New England Journal of Medicine, vol. 334, no. 11, pp. 693–699, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. W. H. Luo, C. P. Jiang, and Y. T. Ding, “Construcion and identification of eukaryotic expression vector pcDNA3. 1 (+)-ABCG2,” Journal of Hepatobiliary Surgery, vol. 21, pp. 137–140, 2013.
  22. F. Wu, L.-Y. Yang, Y.-F. Li, D.-P. Ou, D.-P. Chen, and C. Fan, “Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma,” Hepatology, vol. 50, no. 6, pp. 1839–1850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Llovet, M. Schwartz, and V. Mazzaferro, “Resection and liver transplantation for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 25, no. 2, pp. 181–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Oishi and X. W. Wang, “Novel therapeutic strategies for targeting liver cancer stem cells,” International Journal of Biological Sciences, vol. 7, no. 5, pp. 517–535, 2011. View at Scopus
  27. M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. F. Sun, Y. Xu, X. R. Yang, et al., “Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection,” Hepatology, vol. 57, pp. 1458–1468, 2013.
  29. Y. C. Ma, J. Y. Yang, and L. N. Yan, “Relevant markers of cancer stem cells indicate a poor prognosis in hepatocellular carcinoma patients: a meta-analysis,” European Journal of Gastroenterology and Hepatology, vol. 25, no. 9, pp. 1007–1016, 2013.
  30. Z. Benderra, A.-M. Faussat, L. Sayada et al., “Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias,” Clinical Cancer Research, vol. 10, no. 23, pp. 7896–7902, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Kamiyama, S. Takagi, C. Yamamoto et al., “Expression of ABC transporters in human hepatocyte carcinoma cells with cross-resistance to epirubicin and mitoxantrone,” Anticancer Research, vol. 26, no. 2, pp. 885–888, 2006. View at Scopus
  32. S. Tsunoda, T. Okumura, T. Ito et al., “ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma,” Oncology, vol. 71, no. 3-4, pp. 251–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Yoh, G. Ishii, T. Yokose et al., “Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer,” Clinical Cancer Research, vol. 10, no. 5, pp. 1691–1697, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Hang, H.-C. Dong, T. Ning, B. Dong, D.-L. Hou, and W.-G. Xu, “Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma,” Diseases of the Esophagus, vol. 25, pp. 638–644, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. O. M. Omran, “The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 31, pp. 367–376, 2012.
  36. L. Xiang, P. Su, S. Xia et al., “ABCG2 is associated with HER-2 Expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma,” Diagnostic Pathology, vol. 6, no. 1, article 90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Chen, D. Yu, H. Zhang, et al., “CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells,” International Journal of Biological Sciences, vol. 8, pp. 992–1004, 2012.
  38. G.-M. Shi, Y. Xu, J. Fan et al., “Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 11, pp. 1155–1163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. H. Sukowati, N. Rosso, D. Pascut, et al., “Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma,” BMC Gastroenterol, vol. 12, article 160, 2012.
  40. J. Yang, D. Liao, C. Chen, et al., “Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway,” Stem Cells, vol. 31, pp. 248–258, 2013.
  41. J. Zhou, F. Chen, J. Xiao et al., “Enhanced functional properties of corneal epithelial cells by coculture with embryonic stem cells via the integrin β1-FAK-PI3K/Akt pathway,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 8, pp. 1168–1177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Morimoto, H. Nagano, M. Sakon et al., “Diagnosis of intrahepatic metastasis and multicentric carcinogenesis by microsatellite loss of heterozygosity in patients with multiple and recurrent hepatocellular carcinomas,” Journal of Hepatology, vol. 39, no. 2, pp. 215–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. A. Torzilli, J. W. Bourne, T. Cigler, et al., “A new paradigm for mechanobiological mechanisms in tumor metastasis,” Seminars in Cancer Biology, vol. 22, pp. 385–395, 2012.
  44. P. M. Wilson, M. J. LaBonte, and H. J. Lenz, “Assessing the in vivo efficacy of biologic antiangiogenic therapies,” Cancer Chemotherapy and Pharmacology, vol. 71, pp. 1–12, 2013.
  45. K. Chen, Y. H. Huang, and J. L. Chen, “Understanding and targeting cancer stem cells: therapeutic implications and challenges,” Acta Pharmacologica Sinica, vol. 34, pp. 732–740, 2013.
  46. D. Horst, S. K. Scheel, S. Liebmann et al., “The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer,” Journal of Pathology, vol. 219, no. 4, pp. 427–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Naor, S. B. Wallach-Dayan, M. A. Zahalka, and R. V. Sionov, “Involvement of CD44, a molecule with a thousand faces, in cancer dissemination,” Seminars in Cancer Biology, vol. 18, no. 4, pp. 260–267, 2008. View at Publisher · View at Google Scholar · View at Scopus