About this Journal Submit a Manuscript Table of Contents
Gastroenterology Research and Practice
Volume 2014 (2014), Article ID 185035, 8 pages
http://dx.doi.org/10.1155/2014/185035
Research Article

Overexpression of FOXO3, MYD88, and GAPDH Identified by Suppression Subtractive Hybridization in Esophageal Cancer Is Associated with Autophagy

1Department of Pharmaceutical Biotechnology and Pharmaceutical Biotechnology Research Center, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
2Pharmaceutical Sciences Research Center, Sari School of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
3Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Golestan 49186-619, Iran
4Department of General Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran

Received 30 September 2013; Revised 12 December 2013; Accepted 16 December 2013; Published 8 January 2014

Academic Editor: D. Fan

Copyright © 2014 Mohammad Soltany-Rezaee-Rad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kmet and E. Mahboubi, “Esophageal cancer in the Caspian littoral of Iran: initial studies,” Science, vol. 175, no. 4024, pp. 846–853, 1972. View at Scopus
  2. F. Bray, J.-S. Ren, E. Masuyer, and J. Ferlay, “Global estimates of cancer prevalence for 27 sites in the adult population in 2008,” International Journal of Cancer, vol. 132, pp. 1133–1145, 2013.
  3. T. Anayama, M. Furihata, T. Takeuchi et al., “Insufficient effect of p27(KIP1) to inhibit cyclin D1 in human esophageal cancer in vitro,” International Journal of Oncology, vol. 18, no. 1, pp. 151–155, 2001. View at Scopus
  4. U. Ribeiro, S. D. Finkelstein, A. V. Safatle-Ribeiro et al., “p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma,” Cancer, vol. 83, pp. 7–18, 1998.
  5. R. Ralhan, S. Arora, T. K. Chattopadhyay, N. K. Shukla, and M. Mathur, “Circulating p53 antibodies, p53 gene mutational profile and product accumulation in esophageal squamous-cell carcinoma in India,” International Journal of Cancer, vol. 85, pp. 791–795, 2000.
  6. M. E. Nita, H. Nagawa, O. Tominaga et al., “p21Waf1/Cip1 expression is a prognostic marker in curatively resected esophageal squamous cell carcinoma, but not p27Kip1, p53, or Rb,” Annals of Surgical Oncology, vol. 6, no. 5, pp. 481–488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Maycotte and A. Thorburn, “Autophagy and cancer therapy,” Cancer Biology and Therapy, vol. 11, no. 2, pp. 127–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Moretti, E. S. Yang, K. W. Kim, and B. Lu, “Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy,” Drug Resistance Updates, vol. 10, no. 4-5, pp. 135–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Chen and J. Debnath, “Autophagy and tumorigenesis,” FEBS Letters, vol. 584, no. 7, pp. 1427–1435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Yang, Y. Yu, R. Kang et al., “Up-regulated autophagy by endogenous high mobility group box-1 promotes chemoresistance in leukemia cells,” Leukemia and Lymphoma, vol. 53, no. 2, pp. 315–322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Klionsky and S. D. Emr, “Autophagy as a regulated pathway of cellular degradation,” Science, vol. 290, no. 5497, pp. 1717–1721, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Glick, S. Barth, and K. F. Macleod, “Autophagy: cellular and molecular mechanisms,” Journal of Pathology, vol. 221, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, “The role of autophagy in cancer development and response to therapy,” Nature Reviews Cancer, vol. 5, no. 9, pp. 726–734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Kondo and S. Kondo, “Autophagy and cancer therapy,” Autophagy, vol. 2, no. 2, pp. 85–90, 2006. View at Scopus
  15. C. Mammucari, G. Milan, V. Romanello et al., “FoxO3 controls autophagy in skeletal muscle in vivo,” Cell Metabolism, vol. 6, no. 6, pp. 458–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Zhao, J. J. Brault, A. Schild et al., “FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells,” Cell Metabolism, vol. 6, no. 6, pp. 472–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zhou, W. Liao, J. Yang et al., “FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway,” Autophagy, vol. 8, pp. 1712–1723, 2012.
  18. R. Medzhitov, P. Preston-Hurlburt, E. Kopp et al., “MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways,” Molecular Cell, vol. 2, no. 2, pp. 253–258, 1998. View at Scopus
  19. E. L. Wang, Z. R. Qian, M. Nakasono et al., “High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer,” British Journal of Cancer, vol. 102, no. 5, pp. 908–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Wang, B. J. Manning, Q. D. Wu, S. Blankson, D. Bouchier-Hayes, and H. P. Redmond, “Endotoxin/lipopolysaccharide activates NF-κb and enhances tumor cell adhesion and invasion through a β1 integrin-dependent mechanism,” Journal of Immunology, vol. 170, no. 2, pp. 795–804, 2003. View at Scopus
  21. C.-S. Shi and J. H. Kehrl, “MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages,” Journal of Biological Chemistry, vol. 283, no. 48, pp. 33175–33182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Colell, J.-E. Ricci, S. Tait et al., “GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation,” Cell, vol. 129, no. 5, pp. 983–997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Jin and E. White, “Role of autophagy in cancer: management of metabolic stress,” Autophagy, vol. 3, no. 1, pp. 28–31, 2007. View at Scopus
  24. T. R. O'Donovan, G. C. O'Sullivan, and S. L. McKenna, “Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics,” Autophagy, vol. 7, no. 5, pp. 509–524, 2011. View at Publisher · View at Google Scholar · View at Scopus