About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2012 (2012), Article ID 198960, 8 pages
http://dx.doi.org/10.1155/2012/198960
Research Article

Genetic Transformation of Common Bean (Phaseolus vulgaris L.) with the Gus Color Marker, the Bar Herbicide Resistance, and the Barley (Hordeum vulgare) HVA1 Drought Tolerance Genes

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA

Received 18 May 2012; Revised 19 July 2012; Accepted 29 July 2012

Academic Editor: Antonio M. De Ron

Copyright © 2012 Kingdom Kwapata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Delgado-Sánchez, M. Saucedo-Ruiz, S. H. Guzmán-Maldonado et al., “An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.),” Plant Science, vol. 170, no. 4, pp. 822–827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. J. L. Aragão, S. G. Ribeiro, L. M. G. Barros et al., “Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus,” Molecular Breeding, vol. 4, no. 6, pp. 491–499, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. F. J. L. Aragão, G. R. Vianna, M. M. C. Albino, and E. L. Rech, “Transgenic dry bean tolerant to the herbicide glufosinate ammonium,” Crop Science, vol. 42, no. 4, pp. 1298–1302, 2002. View at Scopus
  4. M. B. Sticklen and H. F. Oraby, “Invited review: shoot apical meristem: a sustainable explant for genetic transformation of cereal crops,” In Vitro Cellular and Developmental Biology, vol. 41, no. 3, pp. 187–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Veltcheva, D. Svetleva, S. Petkova, and A. Perl, “In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)-problems and progress,” Scientia Horticulturae, vol. 107, no. 1, pp. 2–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. C. Liu, B. J. Park, A. Kanno, and T. Kameya, “The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene,” Molecular Breeding, vol. 16, no. 3, pp. 189–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. O. Amugune, B. Anyango, and T. K. Mukiama, “Agrobacterium-mediated transformation of common bean,” African Crop Science Journal, vol. 19, no. 3, pp. 137–147, 2011.
  8. K. Bonfim, J. C. Faria, E. O. P. L. Nogueira, É. A. Mendes, and F. J. L. Aragão, “RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris),” Molecular Plant-Microbe Interactions, vol. 20, no. 6, pp. 717–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. J. L. Aragão and J. C. Faria, “First transgenic geminivirus-resistant plant in the field,” Nature Biotechnology, vol. 27, no. 12, pp. 1086–1088, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. G. R. Vianna, M. M. C. Albino, B. B. A. Dias, L. D. M. Silva, E. L. Rech, and F. J. L. Aragão, “Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.),” Scientia Horticulturae, vol. 99, no. 3-4, pp. 371–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. L. Rech, G. R. Vianna, and F. J. L. Aragão, “High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants,” Nature Protocols, vol. 3, no. 3, pp. 410–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Colpaert, S. Tilleman, M. Van Montagu, G. Gheysen, and N. Terryn, “Composite Phaseolus vulgaris plants with transgenic roots as research tool,” African Journal of Biotechnology, vol. 7, no. 4, pp. 404–408, 2008. View at Scopus
  13. J. Arellano, S. I. Fuentes, P. Castillo-España, and G. Hernández, “Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis,” Plant Cell, Tissue and Organ Culture, vol. 96, no. 1, pp. 11–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Kwapata, R. Sabzikar, M. B. Sticklen, and J. D. Kelly, “In vitro regeneration and morphogenesis studies in common bean,” Plant Cell, Tissue and Organ Culture, vol. 100, no. 1, pp. 97–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Tollefson, “Brazil cooks up transgenic bean,” Nature, vol. 478, p. 168, 2011.
  16. M. Naderpour and I. E. Johansen, “Visualization of resistance responses in Phaseolus vulgaris using reporter tagged clones of Bean common mosaic virus,” Virus Research, vol. 159, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Zhu, “Salt and drought stress signal transduction in plants,” Annual Review of Plant Biology, vol. 53, pp. 247–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Hong, R. Barg, and T. H. D. Ho, “Developmental and organ-specific expression of an ABA- and stress-induced protein in barley,” Plant Molecular Biology, vol. 18, no. 4, pp. 663–674, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Qian, Z. Han, T. Zhao, G. Deng, Z. Pan, and M. Yu, “Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit,” Australian Journal of Agricultural Research, vol. 58, no. 5, pp. 425–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Deping, X. Duan, B. Wang, B. Hong, T.-H. Ho, and R. Wu, “Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice,” Plant Physiology, vol. 110, no. 1, pp. 249–257, 1996. View at Scopus
  21. E. Sivamani, A. Bahieldin, J. M. Wraith et al., “Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene,” Plant Science, vol. 155, no. 1, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bahieldin, H. T. Mahfouz, H. F. Eissa et al., “Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance,” Physiologia Plantarum, vol. 123, no. 4, pp. 421–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Zhang, A. Ohta, M. Takagi, and R. Imai, “Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins,” Journal of Biochemistry, vol. 127, no. 4, pp. 611–616, 2000. View at Scopus
  24. D. Fu, B. Huang, Y. Xiao, S. Muthukrishnan, and G. H. Liang, “Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance,” Plant Cell Reports, vol. 26, no. 4, pp. 467–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Lal, V. Gulyani, and P. Khurana, “Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica),” Transgenic Research, vol. 17, no. 4, pp. 651–663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. B. Maqbool, H. Zhong, Y. El-Maghraby et al., “Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing HVA1,” Theoretical and Applied Genetics, vol. 105, no. 2-3, pp. 201–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. B. Maqbool, H. Zhong, H. F. Oraby, and M. B. Sticklen, “Transformation of oats and its application to improving osmotic stress tolerance,” Methods in Molecular Biology, vol. 478, pp. 149–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco cultures,” Physiolgia Plantarum, vol. 15, pp. 473–497, 1962.
  29. R. A. Jefferson, T. A. Kavanagh, and M. W. Bevan, “GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants,” The EMBO Journal, vol. 6, no. 13, pp. 3901–3907, 1987. View at Scopus
  30. M. A. Saghai-Maroof, K. M. Soliman, R. A. Jorgensen, and R. W. Allard, “Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 24, pp. 8014–8018, 1984. View at Scopus
  31. J. Sambrook, F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, New York, NY, USA, 2nd edition, 1989.
  32. M. Kasuga, S. Miura, K. Shinozaki, and K. Yamaguchi-Shinozaki, “A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer,” Plant and Cell Physiology, vol. 45, no. 3, pp. 346–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. P. Singh, “Drought resistance in the race Durango dry bean landraces and cultivars,” Agronomy Journal, vol. 99, no. 5, pp. 1219–1225, 2007. View at Publisher · View at Google Scholar · View at Scopus