About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2012 (2012), Article ID 238634, 6 pages
http://dx.doi.org/10.1155/2012/238634
Research Article

Grain Sorghum Response to Row Spacing and Plant Populations in the Texas Coastal Bend Region

1Texas AgriLife Research, Corpus Christi, TX 78406, USA
2Texas AgriLife Extension Service, Corpus Christi, TX 78406, USA

Received 2 October 2012; Accepted 25 November 2012

Academic Editor: David Clay

Copyright © 2012 Carlos J. Fernandez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. D. Fromme, C. J. Fernandez, W. J. Grichar, and R. L. Jahn, “Grain sorghum response to hybrid, row spacing, and plant populations along the upper Texas Gulf Coast,” International Journal of Agronomy, vol. 2012, Article ID 930630, 5 pages, 2012. View at Publisher · View at Google Scholar
  2. K. B. Porter, M. E. Johnson, and W. H. Stetten, “The effect of row spacing, fertilizer, and planting rates on yield and water use of irrigated grain sorghum,” Agronomy Journal, vol. 52, pp. 431–433, 1960.
  3. F. C. Stickler and S. Wearden, “Yield and yield components of grain sorghum as affected by row width and stand density,” Agronomy Journal, vol. 57, pp. 564–567, 1965.
  4. O. R. Jones and G. L. Johnson, “Row width and plant density effects on Texas High Plains sorghum,” Journal Production Agriculture, vol. 4, pp. 613–621, 1991.
  5. S. P. Conley, W. G. Stevens, and D. D. Dunn, “Grain sorghum response to row spacing, plant density, and planter skips,” Crop Management, 2005. View at Publisher · View at Google Scholar
  6. S. A. Staggenborg, “Grain sorghum response to row spacings and seeding rates in Kansas,” Journal of Production Agriculture, vol. 12, no. 3, pp. 390–395, 1999. View at Scopus
  7. T. J. Gerik and C. L. Neely, “Plant density effects on main culm and tiller development of grain sorghum,” Crop Science, vol. 27, pp. 1225–1230, 1987.
  8. T. A. Lafarge and G. L. Hammer, “Predicting plant leaf area production: shoot assimilate accumulation and partitioning, and leaf area ratio, are stable for a wide range of sorghum population densities,” Field Crops Research, vol. 77, no. 2-3, pp. 137–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. T. A. Lafarge and G. L. Hammer, “Tillering in grain sorghum over a wide range of population densities: modelling dynamics of tiller fertility,” Annals of Botany, vol. 90, no. 1, pp. 99–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. O. M’Khaitir and R. L. Vanderlip, “Grain sorghum and pearl millet response to date and rate of planting,” Agronomy Journal, vol. 84, pp. 579–582, 1992.
  11. W. J. Grichar, “Planting date, cultivar, and seeding rate effects on soybean production along the Texas Gulf Coast,” Crop Management, 2007. View at Publisher · View at Google Scholar
  12. R. H. Brown, E. R. Beaty, W. J. Ethredge, and D. D. Hays. “, “Influence of row width and plant population on yield of two varieties of corn (Zea mays L.),” Agronomy Journal, vol. 62, pp. 767–770, 1970.
  13. J. M. Fulton, “Relationships among soil moisture stress, plant populations, row spacing, and yield of corn,” Canadian Journal Plant Science, vol. 50, pp. 31–38, 1970.
  14. B. A. Besler, W. J. Grichar, S. A. Senseman, R. G. Lemon, and T. A. Baughman, “Effects of row pattern configurations and reduced (1/2x) and full rates (1x) of imazapic and diclosulam for control of yellow nutsedge (Cyperus esculentus) in peanut,” Weed Technology, vol. 22, no. 3, pp. 558–562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Limon-Ortega, S. C. Mason, and A. R. Martin, “Production practices improve grain sorghum and pearl millet competitiveness with weeds,” Agronomy Journal, vol. 90, no. 2, pp. 227–232, 1998. View at Scopus
  16. H. H. Bryant, J. T. Touchton, and D. P. Moore, “Narrow rows and early planting produce top grain sorghum yields,” Highlights Agriculture Research Alabama Agricultural Experiment Station, vol. 33, article 5, 1986.
  17. A. P. Everaarts, “Effects of competition with weeds on the growth, development and yield of sorghum,” Journal of Agricultural Science, vol. 120, no. 2, pp. 187–196, 1993. View at Scopus
  18. R. H. Walker and G. A. Buchanan, “Crop manipulation in integrated weed management systems,” Weed Science, vol. 30, pp. 17–24, 1982.
  19. W. J. Grichar, “Row spacing, plant populations, and cultivar effects on soybean production along the Texas Gulf Coast,” Crop Management, 2007. View at Publisher · View at Google Scholar
  20. B. E. Tharp and J. T. Kells, “Effect of glufosinate-resistant corn (Zea mays) population and row spacing on light interception, corn yield, and common lambsquarters (Chenopodium album) growth,” Weed Technology, vol. 15, pp. 413–418, 2001.
  21. K. D. Thelen, “Interaction between row spacing and yield: why it works,” Crop Management, 2006. View at Publisher · View at Google Scholar
  22. F. H. Andrade, P. Calviño, A. Cirilo, and P. Barbieri, “Yield responses to narrow rows depend on increased radiation interception,” Agronomy Journal, vol. 94, no. 5, pp. 975–980, 2002. View at Scopus
  23. W. C. Johnson, E. P. Prostko, and B. G. Mullinix, “Improving the management of dicot weeds in peanut with narrow row spacings and residual herbicides,” Agronomy Journal, vol. 97, no. 1, pp. 85–88, 2005. View at Scopus
  24. J. R. Teasdale, “Influence of narrow row/high population corn (Zea mays) on weed control and light transmittance,” Weed Technology, vol. 9, no. 1, pp. 113–118, 1995. View at Scopus
  25. C. J. Fernandez, T. Foutz, and R. Schawe, “Increasing irrigated grain sorghum yield through double-row planting,” in 4th Australian Sorghum Conference, A. K. Borrell and R. G. Hensell, Eds., Department of Primary Industries-Queensland Government, Grains and Research Development Corporation, Queensland, Australia, 2001.
  26. M. J. Kasperbauer and D. L. Karlen, “Plant spacing and reflected far-red light effects on phytochrome-regulated photosynthate allocation in corn seedlings,” Crop Science, vol. 34, no. 6, pp. 1564–1569, 1994. View at Scopus
  27. D. G. Bullock, R. L. Nielsen, and W. E. Nyquist, “A growth analysis comparison of corn growth in conventional and equidistant plant spacing,” Crop Science, vol. 28, pp. 254–258, 1988.
  28. H. C. Dethloff and G. L. Nall, “AGRICULTURE,” Handbook of Texas Online, Texas State Historical Association, 2012http://www.tshaonline.org/handbook/online/articles/ama01.
  29. P. L. Brown and W. D. Shrader, “Grain yields, evapotranspiration and water use efficiency of grain sorghum under different cultural practices,” Agronomy Journal, vol. 51, pp. 339–343, 1959.
  30. C. Stichler, M. McFarland, and C. Coffman, “Irrigated and dryland grain sorghum production,” 2012, http://publications.tamu.edu/CORN_SORGHUM/PUB_Irrigated%20and%20Dryland%20Grain%20Sorghum%20Production.pdf.
  31. H. J. Mascagni and B. Bell, “Plant patterns for different grain sorghum hybrids,” Louisiana Agriculture Magazine, 2005, http://www.Isuagcenter.com/en/communications/publications/agmag/Archive/2005/Winter/Plant+Patterns+for+Different+Grain+Sorghum+Hybrids.htm.
  32. Z. Karchi and Y. Rudich, “Effects of row width and seedling spacing on yield and its components in grain sorghum grown under dryland conditions,” Agronomy Journal, vol. 58, pp. 602–604, 1966.
  33. J. Kelley, “Chapter 1: growth and development,” Grain Sorghum Handbook, MP 297, http://www.uaex.edu/Other_areas/publications/PDF/MP297/MP297.PDF.
  34. N. H. Welch, E. Burnett, and H. V. Eck, “Effect of row spacing, plant population, and nitrogen fertilization on dryland grain sorghum production,” Agronomy Journal, vol. 58, pp. 160–163, 1966.
  35. M. M. Jones and H. M. Rawson, “Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency, and osmotic potential in sorghum,” Physiologia Plantarum, vol. 45, no. 1, pp. 103–111, 1979. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Steiner, “Dryland grain sorghum water use, light interception, and growth responses to planting geometry,” Agronomy Journal, vol. 78, pp. 720–726, 1986.
  37. J. R. Sanabria, J. F. Stone, and D. L. Weeks, “Stomatal response to high evaporative demand in irrigated grain sorghum in narrow and wide row spacing,” Agronomy Journal, vol. 87, no. 5, pp. 1010–1017, 1995. View at Scopus