About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2012 (2012), Article ID 309153, 6 pages
http://dx.doi.org/10.1155/2012/309153
Research Article

Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

Crop Systems & Global Change Laboratory, Agricultural Research Service-USDA, Room 342, Building 001, BARC-west, 10300 Baltimore Avenue, Beltsville, MD 20705, USA

Received 12 June 2012; Accepted 11 July 2012

Academic Editor: Bernd Lennartz

Copyright © 2012 Richard Sicher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Houghton, “Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000,” Tellus B, vol. 55, no. 2, pp. 378–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Bowes, “Facing the inevitable: plants and increasing atmospheric CO2,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 44, no. 1, pp. 309–332, 1993. View at Scopus
  3. B. A. Kimball, J. R. Mauney, F. S. Nakayama, and S. B. Idso, “Effects of increasing atmospheric CO2 on vegetation,” Vegetatio, vol. 104-105, no. 1, pp. 65–75, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. L. H. Ziska, J. A. Bunce, and F. Caulfield, “Intraspecific variation in seed yield of soybean (Glycine max) in response to increased atmospheric carbon dioxide,” Australian Journal of Plant Physiology, vol. 25, no. 7, pp. 801–807, 1998. View at Scopus
  5. E. A. Ainsworth, P. A. Davey, C. J. Bernacchi et al., “A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield,” Global Change Biology, vol. 8, no. 8, pp. 695–709, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Y. Nie, S. P. Long, R. L. Garcia et al., “Effects of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins,” Plant, Cell & Environment, vol. 18, no. 8, pp. 855–864, 1995. View at Scopus
  7. R. C. Sicher and J. A. Bunce, “Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide,” Photosynthesis Research, vol. 52, no. 1, pp. 27–38, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Geiger, V. Haake, F. Ludewig, U. Sonnewald, and M. Stitt, “The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco,” Plant, Cell & Environment, vol. 22, no. 10, pp. 1177–1199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. W. J. Arp, “Effects of source-sink relations on photosynthetic acclimation to elevated CO2,” Plant, Cell & Environment, vol. 14, no. 8, pp. 869–875, 1991. View at Scopus
  10. R. C. Sicher, “Interactive effects of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate partitioning in barley roots,” Physiologia Plantarum, vol. 123, no. 2, pp. 219–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. G. Thomas, K. J. Boote, L. H. Allen Jr., M. Gallo-Meagher, and J. M. Davis, “Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance,” Crop Science, vol. 43, no. 4, pp. 1548–1557, 2003. View at Scopus
  12. R. Sicher, J. Bunce, and B. Matthews, “Differing responses to carbon dioxide enrichment by a dwarf and a normal-sized soybean cultivar may depend on sink capacity,” Canadian Journal of Plant Science, vol. 90, no. 3, pp. 257–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. H. Ziska, R. Palowsky, and D. R. Reed, “A quantitative and qualitative assessment of mung bean (Vigna mungo (L.) Wilczek) seed in response to elevated atmospheric carbon dioxide: potential changes in fatty acid composition,” Journal of the Science of Food and Agriculture, vol. 87, no. 5, pp. 920–923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Y. Wang, J. A. Bunce, and J. L. Maas, “Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries,” Journal of Agricultural and Food Chemistry, vol. 51, no. 15, pp. 4315–4320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Kinsman, C. Lewis, M. S. Davies et al., “Elevated Co2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata,” Plant, Cell & Environment, vol. 20, no. 10, pp. 1309–1316, 1997. View at Scopus
  16. R. C. Sicher, “Daily changes of amino acids in soybean leaflets are modified by CO2 enrichment,” International Journal of Plant Biology, vol. 1, no. 18, pp. 89–893, 2010. View at Publisher · View at Google Scholar
  17. U. Roessner, C. Wagner, J. Kopka, R. N. Trethewey, and L. Willmitzer, “Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry,” Plant Journal, vol. 23, no. 1, pp. 131–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Stitt, “Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells,” Plant, Cell & Environment, vol. 14, no. 8, pp. 741–762, 1991.
  19. R. Zrenner, K. Schüler, and U. Sonnewald, “Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers,” Planta, vol. 198, no. 2, pp. 246–252, 1996. View at Scopus