About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2012 (2012), Article ID 527673, 13 pages
http://dx.doi.org/10.1155/2012/527673
Research Article

Growth and Physiological Responses of Phaseolus Species to Salinity Stress

1Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Km. 9.5 Carr. Morelia-Zinapécuaro, 58880 Tarímbaro, Michoacán, Mexico
2Departamento de Mejoramiento de Semillas, Unipalma S.A., Calle 74 A No. 22-31, Bogotá D.C., Colombia

Received 15 June 2012; Revised 21 August 2012; Accepted 24 August 2012

Academic Editor: Antonio M. De Ron

Copyright © 2012 J. S. Bayuelo-Jiménez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Munns, “Comparative physiology of salt and water stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 239–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. T. J. Flowers, “Improving crop salt tolerance,” Journal of Experimental Botany, vol. 55, no. 396, pp. 307–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. George E. Brown Jr., “Research Databases. Bibliography on Salt Tolerance,” USDA-ARS. US Dep. Agric. Res. Serv. Riverside, CA. http://www.ars.usda.gov/Services/docs.htm/docid=8908, 2008.
  4. P. M. Hasegawa, R. A. Bressan, J. K. Zhu, and H. J. Bohnert, “Plant cellular and molecular responses to high salinity,” Annual Review of Plant Biology, vol. 51, pp. 463–499, 2000. View at Scopus
  5. H. Greenway and R. Munns, “Mechanisms of salt tolerance in non-halophytes,” Annual Review of Plant Physiology, vol. 31, pp. 149–190, 1980.
  6. F. J. M. Maathuis and A. Amtmann, “K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios,” Annals of Botany, vol. 84, no. 2, pp. 123–133, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kamel and M. A. El-Tayeb, “K+/Na+ soil-plant interactions during salt stress and their role in osmotic adjustment in faba beans,” Spanish Journal of Agricultural Research, vol. 2, pp. 257–265, 2004.
  8. Z. Chen, I. Newman, M. Zhou, N. Mendham, G. Zhang, and S. Shabala, “Screening plants for salt tolerance by measuring K+ flux: a case study for barley,” Plant, Cell and Environment, vol. 28, no. 10, pp. 1230–1246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. T. A. Cuin, A. J. Miller, S. A. Laurie, and R. A. Leigh, “Potassium activities in cell compartments of salt-grown barley leaves,” Journal of Experimental Botany, vol. 54, no. 383, pp. 657–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Chen, M. Zhou, I. A. Newman, N. J. Mendham, G. Zhang, and S. Shabala, “Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance,” Functional Plant Biology, vol. 34, no. 2, pp. 150–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Cuin and S. Shabala, “Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots,” Plant and Cell Physiology, vol. 46, no. 12, pp. 1924–1933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Cuin and S. Shabala, “Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots,” Plant, Cell and Environment, vol. 30, no. 7, pp. 875–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. H. H. Chen and N. Murata, “Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes,” Current Opinion in Plant Biology, vol. 5, no. 3, pp. 250–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Jouve, L. Hoffmann, and J. F. Hausman, “Polyamide, carbohydrate, and proline content changes during salt stress exposure of Aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism,” Plant Biology, vol. 6, no. 1, pp. 74–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Shipley, “Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis,” Functional Ecology, vol. 20, no. 4, pp. 565–574, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Hunt, Basic Growth Analysis. Plant Growth Analysis for Beginners, Unwin Hyman, London, UK, 1990.
  17. J. M. Romero and T. Marañón, “Long-term responses of Melilotus segetalis to salinity. I. Growth and partitioning,” Plant, Cell and Environment, vol. 17, no. 11, pp. 1243–1248, 1994. View at Scopus
  18. S. E. El-Hendawy, Y. Hu, and U. Schmidhalter, “Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances,” Australian Journal of Agricultural Research, vol. 56, no. 2, pp. 123–134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Lambers and H. Poorter, “Inherent variation in growth rate between higher plants: a search for physiological causes and consequences,” Advances in Ecological Research, vol. 23, no. C, pp. 187–261, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Läuchli, “Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions,” in Salinity Tolerance in Plants, R. C. Staples and G. H. Toenniessen, Eds., pp. 171–187, Wiley, New York, NY, USA, 1984.
  21. S. P. Singh, P. Gepts, and D. G. Debouck, “Races of common bean (Phaseolus vulgaris, Fabaceae),” Economic Botany, vol. 45, no. 3, pp. 379–396, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Seemann and C. Critchley, “Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L.,” Planta, vol. 164, no. 2, pp. 151–162, 1985. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Bayuelo-Jiménez, D. G. Debouck, and J. P. Lynch, “Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions,” Field Crops Research, vol. 80, no. 3, pp. 207–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. P. B. S. Gama, S. Inanaga, K. Tanaka, and R. Nakazawa, “Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress,” African Journal of Biotechnology, vol. 6, no. 2, pp. 079–088, 2007. View at Scopus
  25. P. Cachorro, A. Ortiz, and A. Cerda, “Growth, water relations and solute composition of Phaseolus vulgaris L. under saline conditions,” Plant Science, vol. 95, no. 1, pp. 23–29, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Cabot, M. C. García, and J. V. Sibole, “Relationship between xylem ion concentration and bean growth responses to short-term salinisation in spring and summer,” Journal of Plant Physiology, vol. 162, no. 3, pp. 327–334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Bayuelo-Jiménez, D. G. Debouck, and J. P. Lynch, “Salinity tolerance in Phaseolus species during early vegetative growth,” Crop Science, vol. 42, no. 6, pp. 2184–2192, 2002. View at Scopus
  28. E. Epstein, Mineral Nutrition of Plants: Principles and Perspectives, John Wiley and Sons, New York, NY, USA, 1972.
  29. P. F. Scholander, H. T. Hammel, E. D. Bradstreet, and E. A. Hemmingsen, “Sap pressure in vascular plants,” Science, vol. 148, no. 3668, pp. 339–346, 1965. View at Scopus
  30. N. T. Basta and M. A. Tabatabai, “Determination of total potassium, sodium, calcium and magnesium in plant materials by ion chromatography,” Soil Science Society of America Journal, vol. 49, no. 1, pp. 76–81, 1985. View at Scopus
  31. G. J. Beke and F. Selles, “Comparison of ion chromatography and a continuous-flow technique for analysis of chloride and sulfate in plant samples,” Communication in Soil Science and Plant Analysis, vol. 24, no. 9-10, pp. 973–978, 1993.
  32. L. Gomez, D. Bancel, E. Rubio, and G. Vercambre, “The microplate reader: an efficient tool for the separate enzymatic analysis of sugars in plant tissues—validation of a micro-method,” Journal of the Science of Food and Agriculture, vol. 87, no. 10, pp. 1893–1905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. A. S. Institute, SAS User’s Guide, Release 4. 0. 2, SAS Institute, Cary, NC, USA, 2000.
  34. I. Kerepesi, G. Galiba, and E. Bányai, “Osmotic and salt stresses induced differential alteration in water-soluble carbohydrate content in wheat seedlings,” Journal of Agricultural and Food Chemistry, vol. 46, no. 12, pp. 5347–5354, 1998. View at Scopus
  35. M. C. Martínez-Ballesta, V. Martínez, and M. Carvajal, “Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl,” Environmental and Experimental Botany, vol. 52, no. 2, pp. 161–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Arbona, A. J. Marco, D. J. Iglesias, M. F. López-Climent, M. Talon, and A. Gómez-Cadenas, “Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L.,” Plant Growth Regulation, vol. 46, no. 2, pp. 153–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Cha-Um, A. Charoenpanich, S. Roytrakul, and C. Kirdmanee, “Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress,” Acta Physiologiae Plantarum, vol. 31, no. 3, pp. 477–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Sivakumar, P. Sharmila, V. Jain, and P. Pardha Saradhi, “Sugars have potential to curtail oxygenase activity of Rubisco,” Biochemical and Biophysical Research Communications, vol. 298, no. 2, pp. 247–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. A. R. Rivelli, R. A. James, R. Munns, and A. G. Condon, “Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake,” Functional Plant Biology, vol. 29, no. 9, pp. 1065–1074, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. H. M. Rawson, M. J. Long, and R. Munns, “Growth and development in NaCl-treated plants. I. Leaf Na and Cl concentrations do not determine gas exchange of leaf blades in barley,” Australian Journal of Plant Physiology, vol. 15, no. 4, pp. 519–527, 1988.
  41. D. J. Longstreth and P. S. Nobel, “Salinity effects on leaf anatomy. Consequences for photosynthesis,” Plant Physiology, vol. 63, no. 4, pp. 700–703, 1979.
  42. T. T. Kozlowski, “Responses of woody plants to flooding and salinity,” Tree Physiology Monograph, vol. 1, pp. 1–29, 1997.
  43. A. Termaat, J. B. Passioura, and R. Munns, “Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley,” Plant Physiology, vol. 77, no. 4, pp. 869–872, 1985.
  44. E. Degl'Innocenti, C. Hafsi, L. Guidi, and F. Navari-Izzo, “The effect of salinity on photosynthetic activity in potassium-deficient barley species,” Journal of Plant Physiology, vol. 166, no. 18, pp. 1968–1981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Shabala, O. Babourina, and I. Newman, “Ion-specific mechanisms of osmoregulation in bean mesophyll cells,” Journal of Experimental Botany, vol. 51, no. 348, pp. 1243–1253, 2000. View at Scopus
  46. G. Manchanda and N. Garg, “Salinity and its effects on the functional biology of legumes,” Acta Physiologiae Plantarum, vol. 30, no. 5, pp. 595–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Coba de la Peña and J. J. Pueyo, “Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches,” Agronomy For Sustainable Development, vol. 32, no. 1, pp. 65–91, 2012.