About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2012 (2012), Article ID 632026, 7 pages
http://dx.doi.org/10.1155/2012/632026
Research Article

Responses of Jatropha curcas to Salt and Drought Stresses

1Texas AgriLife Research Center at El Paso, The Texas A&M University System, 1380 A&M Circle, El Paso, TX 79927, USA
2El Paso Community College, Research Initiative for Science Enhancement Program, P.O. BOX 20500, El Paso, TX 79938, USA
3Texas AgriLife Research Center at Weslaco, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA

Received 29 February 2012; Accepted 8 May 2012

Academic Editor: Ravindra N. Chibbar

Copyright © 2012 Genhua Niu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kumar and S. Sharma, “An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review,” Industrial Crops and Products, vol. 28, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Openshaw, “A review of Jatropha curcas: an oil plant of unfulfilled promise,” Biomass and Bioenergy, vol. 19, no. 1, pp. 1–15, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Francis, R. Edinger, and K. Becker, “A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations,” Natural Resources Forum, vol. 29, no. 1, pp. 12–24, 2005. View at Scopus
  4. R. M. Jingura, “Technical options for optimization of production of Jatropha as a biofuel feedstock in arid and semi-arid areas of Zimbabwe,” Biomass and Bioenergy, vol. 35, no. 5, pp. 2127–2132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Abou Kheira and N. M. M. Atta, “Response of Jatropha curcas L. to water deficit: yield, water use efficiency and oilseed characteristics,” Biomass and Bioenergy, vol. 33, no. 10, pp. 1343–1350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Kumar, S. Singh, R. Sharma, V. Kumar, H. Chandra, and K. Malhotra, “Above-ground morphological predictors of rooting success in rooted cuttings of Jatropha curcas L.,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3891–3895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, San Diego, Calif, USA, 2nd edition, 1995.
  8. R. Munns, “Comparative physiology of salt and water stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 239–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. W. H. Maes, W. M. J. Achten, B. Reubens, D. Raes, R. Samson, and B. Muys, “Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress,” Journal of Arid Environments, vol. 73, no. 10, pp. 877–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. M. J. Achten, W. H. Maes, B. Reubens et al., “Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress,” Biomass and Bioenergy, vol. 34, no. 5, pp. 667–676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. D. Wright, “The pour-through nutrient extraction procedure,” HortScience, vol. 21, pp. 227–229, 1986.
  12. U.S. Environmental Protection Agency, “Methods of chemical analysis of water and wastes,” Tech. Rep. EPA-600/4-79-020, U.S. Government Printing Office, Washington, DC, USA, 1983.
  13. E. V. Maas, “Salt tolerance of plants,” Applied Agricultural Research, vol. 1, pp. 12–26, 1986.
  14. M. Ashraf and P. J. C. Harris, “Potential biochemical indicators of salinity tolerance in plants,” Plant Science, vol. 166, no. 1, pp. 3–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Niu and D. S. Rodriguez, “Responses of growth and ion uptake of four rose rootstocks to chloride- or sulfate-dominated salinity,” Journal of the American Society for Horticultural Science, vol. 133, no. 5, pp. 663–669, 2008. View at Scopus
  17. G. Niu and D. S. Rodriguez, “Relative salt tolerance of selected herbaceous perennials and groundcovers,” Scientia Horticulturae, vol. 110, no. 4, pp. 352–358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Wu, J. Chen, P. Van Mantgem, and M. A. Harivandi, “Regenerant wastewater irrigation and ion uptake in five turfgrass species,” Journal of Plant Nutrition, vol. 19, no. 12, pp. 1511–1530, 1996. View at Scopus
  19. D. S. Rodriguez, L. Aguiniga, and W. Mackay, “Salinity tolerance of Lupinus havardii and Lupinus texensis,” HortScience, vol. 42, no. 3, pp. 526–528, 2007. View at Scopus
  20. G. Niu, D. S. Rodriguez, and T. Starman, “Response of bedding plants to saline water irrigation,” HortScience, vol. 45, no. 4, pp. 628–636, 2010. View at Scopus
  21. G. Niu, D. S. Rodriguez, E. Call, P. W. Bosland, A. Ulery, and E. Acosta, “Responses of eight chile peppers to saline water irrigation,” Scientia Horticulturae, vol. 126, no. 2, pp. 215–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. D. Colmer, R. Munns, and T. J. Flowers, “Improving salt tolerance of wheat and barley: future prospects,” Australian Journal of Experimental Agriculture, vol. 45, no. 11, pp. 1425–1443, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Munns and R. A. James, “Screening methods for salinity tolerance: a case study with tetraploid wheat,” Plant and Soil, vol. 253, no. 1, pp. 201–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. R. I. Cabrera and P. Perdomo, “Reassessing the salinity tolerance of greenhouse roses under soilless production conditions,” HortScience, vol. 38, no. 4, pp. 533–536, 2003. View at Scopus
  25. G. Niu, D. S. Rodriguez, and W. Mackay, “Growth and physiological responses to drought stress in four oleander clones,” Journal of the American Society for Horticultural Science, vol. 133, no. 2, pp. 188–196, 2008. View at Scopus