About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2013 (2013), Article ID 156520, 9 pages
http://dx.doi.org/10.1155/2013/156520
Research Article

Analysis of Essential Elements for Plants Growth Using Instrumental Neutron Activation Analysis

1Department of Physics, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria
2Head of Unit for Dosimetry, National Radiation and Protection Agency, Bastos, Yaounde, Cameroon
3Department of Crop Production, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria

Received 28 July 2013; Revised 15 August 2013; Accepted 17 August 2013

Academic Editor: Othmane Merah

Copyright © 2013 R. L. Njinga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Tisdale, W. L. Nelson, J. D. Beaton, and J. L. Havlin, Soil Fertility and Fertilizer, Prentice Hall, Upper Saddle River, NJ, USA, 5th edition, 1993.
  2. I. A. Jaiyeoba, “An assessment of soil fertility restoration under fallow in Nigerian savannah,” Soil Use and Management, vol. 13, no. 3, pp. 163–164, 1997. View at Scopus
  3. C. D. Foy, R. L. Chaney, and M. C. White, “The physiology of metal toxicity in plants,” Annual Review of Plant Physiology, vol. 29, pp. 511–566, 1978.
  4. V. O. Ajibola and R. Rolawanu, “Trace elements in the environment,” Journal of Scientific and Industrial Research, vol. 59, no. 2, pp. 132–136, 2000.
  5. A. Aubert and M. Pinta, “Trace elements in soils,” in Development in Soil Science, vol. 7, pp. 43–95, Elsevier, Amsterdam, The Netherlands, 1977.
  6. I. O. B. Ewa and L. A. Dim, “Major, minor and trace element determinations from a Nigerian aquatic sediment,” Journal of Environmental Science and Health, vol. 24, no. 3, pp. 243–254, 1989. View at Scopus
  7. S. C. Hodges, Soil Fertility Basics, Soil. Science Extension North Carolina State University Certified Crop Advisor Training, 1995.
  8. P. A. Sanchez and T. J. Logan, “Myths and scienceabout the chemistry and fertility of soils in the Tropics,” in Myths and Science of Soils of the Tropics, R. Lal and P. A. Sanchez, Eds., pp. 35–46, Soil Science Society of America, Madison, Wis, USA, 1992.
  9. J. L. Ahlrichs, “The soil environment,” in Organic Chemicals in the Soil Environment, C. A. I. Goring and J. W. Hamaker, Eds., Marcel Dekker, New York, NY, USA, 1972.
  10. J. O. Adejuwan, “A biogeographical survey of the dynamics of Savannah vegetation in Nigeria,” Geographical Journal, vol. 14, pp. 31–48, 1971.
  11. I. O. B. Ewa, M. O. A. Oladipo, L. A. Dim, and S. P. Mallam, “Major, minor and trace elements of the Samaru savannah soil in Nigeria,” Journal of Trace and Microprobe Techniques, vol. 18, no. 3, pp. 389–395, 2000. View at Scopus
  12. J. C. Menaut, R. Barbault, P. Lavelle, and M. Lepage, “African Savannas: biological systems ofhumification and mineralization,” in Ecology and Management of the World’s Savannas, J. C. Tothill and J. J. Mott, Eds., pp. 14–33, Australian Academic Science, Canberra, Australia, 1985.
  13. I. O. B. Ewa and L. A. Dim, “Major, minor and trace element determinations from a Nigerian aquatic sediment,” Journal of Environmental Science and Health, vol. 24, no. 3, pp. 243–254, 1989. View at Scopus
  14. V. Y. Borkhodoev, “X-ray fluorescence determination of rubidium, strontium, yttrium, zirconium and niobium in rocks,” Journal of Trace and Microprobe Techniques, vol. 16, no. 3, pp. 341–352, 1998. View at Scopus
  15. O. G. Duliu, L. C. Dinescu, and D. Skliros, “INAA study of the distribution of some major and trace elements in Greek limestones and marbles,” Journal of Trace and Microprobe Techniques, vol. 17, no. 2, pp. 165–175, 1999. View at Scopus
  16. A. R. Bromfield, “Sulphur in northern Nigerian soils: the effects of cultivation and fertilization on total socilsulpur and sulphate pattern in soil profile,” Journal of Agriculture Science, vol. 78, pp. 465–470, 1972.
  17. M. E. Mosugu, V. O. Chude, I. E. Esu, T. Kparmwang, and W. B. Malgwi, “Contents and profile distribution of three forms of free iron oxides in three ultisols and an Alfisol in Nigeria,” Communications in Soil Science and Plant Analysis, vol. 30, no. 7-8, pp. 1013–1024, 1999. View at Scopus
  18. K. K. Deshmukh, Central Region Neutron Activation Analysis at GSI Laboratory, Geological Survey of India, Pune, India, 2000.
  19. D. De Soete, R. Gijbels, and J. Hoste, Neutron Activation Analysis, John Wiley & Sons, London, UK, 1972.
  20. Ehmann, W. D, and D. E. Vance, Radiochemistry and Nuclear Methods of Analysis, vol. 116 of Chemical Analysis: A Series of Monographs in Analytical Chemistry and Its Applications, John Wiley & Sons, New York, NY, USA, 1990.
  21. J. Csikai, Handbook of Fast Neutron Generators, vol. 1-2, CRC Press, Boca Raton, Fla, USA, 1987.
  22. K. Heydorn, Neutron Activation Analysis For Clinical Trace Element Research, vol. 1-2, CRC Press, Boca Raton, Fla, USA, 1984.
  23. S. J. Parry, Activation Spectrometry in Chemical Analysis, vol. 119 of Chemical Analysis: A Series of Monographs in Analytical Chemistry and Its Applications, John Wiley & Sons, New York, NY, USA, 1990.
  24. J. Tolgyessy and E. H. Klehr, Nuclear Environmental Chemical Analysis, Series in Analytical Chemistry, Ellis Horwood, Chichester, UK, 1987.
  25. J. Tolgyessy and M. Kyrs, Radioanalytical Chemistry, vol. 1-2, Ellis Horwood, Cichester, UK, 1989.
  26. I. M. Klthoff and P. J. Elving, “Nuclear activation and radioisotope methods of analysis,” in Treatise on Analytical Chemistry, John Wiley & Sons, New York, NY, USA, 1986.
  27. E. Witkowska, K. Szczepaniak, and M. Biziuk, “Some applications of neutron activation analysis: a review,” Journal of Radioanalytical and Nuclear Chemistry, vol. 265, no. 1, pp. 141–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. I. O. Abugassa, S. Sarmani, and U. El-Ghawi, “Instrumental neutron activation analysis based on k0-standardization method as compared with other methods in the analysis of the IAEA inter-comparison test,” Journal of Radioanalytical and Nuclear Chemistry, vol. 259, no. 3, pp. 381–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. H. Chao, Y. C. Sun, C. J. Chen, C. L. Tseng, and M. H. Yang, “Determination of trace Al in silicon carbide by epithermal neutron activation,” Applied Radiation and Isotopes, vol. 62, no. 4, pp. 561–567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Jonah, I. M. Umar, M. O. A. Oladipo, G. I. Balogun, and D. J. Adeyemo, “Standardization of NIRR-1 irradiation and counting facilities for instrumental neutron activation analysis,” Applied Radiation and Isotopes, vol. 64, no. 7, pp. 818–822, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. H. Filby, “Neutron Activation Analysis, Isotopic and nuclear analytical techniques in biological systems: a critical study, part IX,” Pure and Applied Chemistry, vol. 67, no. 11, pp. 1929–1941, 1995.
  32. W. Liyu, WINSPAN (2004), A Multi-Purpose Gamma-Ray Spectrum Analysis Software, CIAE, Beijing, China, 2004.
  33. R. L. Njinga, S. A. Jonah, I. O. B. Ewa, M. O. A. Oladipo, and G. A. Agbo, “Alternative approach for efficiency data generation in neutron activation analysis,” International Journal of Applied Science and Technology, vol. 1, no. 5, pp. 244–256, 2011.
  34. E. E. Schulte, Soil and Applied Iron, Understanding Plants Nutrients A3554, 2000.
  35. M. O. A. Oladipo, R. L. Njinga, A. Baba, and H. L. Muhammad, “Evaluation of trace elements in some northern-Nigeria traditional medicinal plants using INAA technique,” Applied Radiation and Isotopes, vol. 70, no. 6, pp. 917–921, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Epstein, Mineral Nutrition of Plants: Principles and Perspectives, John Wiley & Sons, New York, NY, USA, 1972.
  37. H. D. Chapman, Ed., Diagnostic Criteria For Plants and Soils, University of California, Riverside, Calif, USA, 1972.
  38. I. Pais, M. Fehér, E. Farkas, Z. Szabó, and I. Cornides, “Titanium as a new trace element,” Communications in Soil Science and Plant Analysis, vol. 8, pp. 407–410, 1977.
  39. A. M. Ure and J. R. Bacon, “Comprehensive analysis of soils and rocks by spark-source mass spectrometry,” The Analyst, vol. 103, no. 1229, pp. 807–822, 1978. View at Scopus
  40. V. Romheld and H. Marscher, “Function of micronutrients in plants,” in Micronutrients in Agriculture, J. Mortredt, F. R. Cox, L. M. Shuman, and R. M. Welch, Eds., Soil Science Society of America, Madison, Wis, USA, 1991.