About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2013 (2013), Article ID 163573, 11 pages
http://dx.doi.org/10.1155/2013/163573
Research Article

Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

1Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
2Center of Thai Traditional and Complementary Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
3School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Received 11 July 2013; Accepted 5 September 2013

Academic Editor: Patrick J. Tranel

Copyright © 2013 Supanimit Teekachunhatean et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. D. R. Setchell, “Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones,” The American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1333S–1346S, 1998. View at Scopus
  2. T. Song, K. Barua, G. Buseman, and P. A. Murphy, “Soy isoflavone analysis: quality control and a new internal standard,” The American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1474S–1479S, 1998. View at Scopus
  3. S. Jung, P. A. Murphy, and I. Sala, “Isoflavone profiles of soymilk as affected by high-pressure treatments of soymilk and soybeans,” Food Chemistry, vol. 111, no. 3, pp. 592–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Atmaca, M. Kleerekoper, M. Bayraktar, and O. Kucuk, “Soy isoflavones in the management of postmenopausal osteoporosis,” Menopause, vol. 15, no. 4, pp. 748–757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D.-F. Ma, L.-Q. Qin, P.-Y. Wang, and R. Katoh, “Soy isoflavone intake increases bone mineral density in the spine of menopausal women: meta-analysis of randomized controlled trials,” Clinical Nutrition, vol. 27, no. 1, pp. 57–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-H. Li, X.-X. Liu, Y.-Y. Bai et al., “Effect of oral isoflavone supplementation on vascular endothelial function in postmenopausal women: a meta-analysis of randomized placebo-controlled trials,” The American Journal of Clinical Nutrition, vol. 91, no. 2, pp. 480–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. R. Cederroth and S. Nef, “Soy, phytoestrogens and metabolism: a review,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 30–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. D. 'Anna, M. L. Cannata, H. Marini et al., “Effects of the phytoestrogen genistein on hot flushes, endometrium, and vaginal epithelium in postmenopausal women: a 2-year randomized, double-blind, placebo-controlled study,” Menopause, vol. 16, no. 2, pp. 301–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. V. S. Lagari and S. Levis, “Phytoestrogens and bone health,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 6, pp. 546–553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Zhu, N. S. Hettiarachchy, R. Horax, and P. Chen, “Isoflavone contents in germinated soybean seeds,” Plant Foods for Human Nutrition, vol. 60, no. 3, pp. 147–151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Hoeck, W. R. Fehr, P. A. Murphy, and G. A. Welke, “Influence of genotype and environment on isoflavone contents of soybean,” Crop Science, vol. 40, no. 1, pp. 48–51, 2000. View at Scopus
  12. S. J. Lee, W. Yan, J. K. Ahn, and I. M. Chung, “Effects of year, site, genotype and their interactions on various soybean isoflavones,” Field Crops Research, vol. 81, no. 2-3, pp. 181–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Seguin, W. Zheng, D. L. Smith, and W. Deng, “Isoflavone content of soybean cultivars grown in eastern Canada,” Journal of the Science of Food and Agriculture, vol. 84, no. 11, pp. 1327–1332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Jumroonpong, W. Somprasong, and P. Pankhaew, Plant Germplasm Database, Department of Agriculture, Ministry of Agriculture and Cooperatives, The Agricultural Cooperatives Federation of Thailand, 2004.
  15. S. Inthipong and R. Sopa, Soybean Cultivation, Department of Agriculture, Ministry of Agriculture and Cooperatives, Idea Square, Thailand, 2004.
  16. S. Barnes, M. Kirk, and L. Coward, “Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 42, no. 11, pp. 2466–2474, 1994. View at Scopus
  17. AOAC official method 2001.10, Determination of Isoflavones in Soy and Selected Foods Containing Soy. Extraction, Saponification and Liquid Chromatography: Official Methods of Analysis, 17th edition, 2000.
  18. H.-J. Wang and P. A. Murphy, “Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location,” Journal of Agricultural and Food Chemistry, vol. 42, no. 8, pp. 1674–1677, 1994. View at Scopus
  19. S. Kudou, Y. Fleury, D. Welti, et al., “Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill),” Agricultural and Biological Chemistry, vol. 55, pp. 2227–2233, 1991.
  20. J. J. Kim, S. H. Kim, S. J. Hahn, and I. M. Chung, “Changing soybean isoflavone composition and concentrations under two different storage conditions over three years,” Food Research International, vol. 38, no. 4, pp. 435–444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H.-J. Wang and P. A. Murphy, “Isoflavone content in commercial soybean foods,” Journal of Agricultural and Food Chemistry, vol. 42, no. 8, pp. 1666–1673, 1994. View at Scopus
  22. V. Yerramsetty, K. Mathias, M. Bunzel, and B. Ismail, “Detection and structural characterization of thermally generated isoflavone malonylglucoside derivatives,” Journal of Agricultural and Food Chemistry, vol. 59, no. 1, pp. 174–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. K. J. Yang and I. M. Chung, “Yearly and genotypic variations in seed isoflavone content of local soybean cultivars,” Korean Journal of Crop Science, vol. 46, pp. 139–144, 2001.
  24. C. Wang, M. Sherrard, S. Pagadala, R. Wixon, and R. A. Scott, “Isoflavone content among maturity group 0 to II soybeans,” Journal of the American Oil Chemists' Society, vol. 77, no. 5, pp. 483–487, 2000. View at Scopus
  25. J. J. B. Anderson, M. Anthony, M. Messina, and S. C. Garner, “Effects of phyto-oestrogens on tissues,” Nutrition Research Reviews, vol. 12, no. 1, pp. 75–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. M. F. McCarty, “Isoflavones made simple—genistein's agonist activity for the beta-type estrogen receptor mediates their health benefits,” Medical Hypotheses, vol. 66, no. 6, pp. 1093–1114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Tsukamoto, S. Shimada, K. Igita et al., “Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development,” Journal of Agricultural and Food Chemistry, vol. 43, no. 5, pp. 1184–1192, 1995. View at Scopus
  28. J.-A. Kim and I.-M. Chung, “Change in isoflavone concentration of soybean (Glycine max L.) seeds at different growth stages,” Journal of the Science of Food and Agriculture, vol. 87, no. 3, pp. 496–503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Belfield, C. Brown, and M. Martin, Soybean: Guide to Upland Cropping in Cambodia, ACIAR Monograph no. 146, Australian Centre for International Agricultural Research, Canberra, Australia, 2011.
  30. P. Pedersen, “Soybean physiology: yield, maturity groups, and growth stages,” 2013, http://www.plantmanagementnetwork.org/.
  31. D. B. Egli, R. A. Wiralaga, and E. L. Ramseur, “Variation in seed size in soybean,” Agronomy Journal, vol. 79, no. 3, pp. 463–467, 1987.
  32. H. J. Hou and K. C. Chang, “Interconversions of isoflavones in soybeans as affected by storage,” Journal of Food Science, vol. 67, no. 6, pp. 2083–2089, 2002. View at Scopus
  33. X. Xu, H.-J. Wang, P. A. Murphy, and S. Hendrich, “Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women,” Journal of Nutrition, vol. 130, no. 4, pp. 798–801, 2000. View at Scopus