About this Journal Submit a Manuscript Table of Contents
International Journal of Agronomy
Volume 2014 (2014), Article ID 601049, 7 pages
http://dx.doi.org/10.1155/2014/601049
Review Article

A Review on Recycling of Sunflower Residue for Sustaining Soil Health

1ICAR Research Complex for NEHR, Sikkim Centre, Tadong, Gangtok, East Sikkim 737102, India
2Indian Agricultural Research Institute, New Delhi 110012, India
3ICAR Research Complex for NEHR, Tripura Centre, Lembucherra, West Tripura 799210, India
4Central Potato Research Station, Shillong 793009, India

Received 31 July 2013; Revised 10 December 2013; Accepted 10 December 2013; Published 4 February 2014

Academic Editor: Manuel Tejada

Copyright © 2014 Subhash Babu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Modern agriculture is now at the crossroads ecologically, economically, technologically, and socially due to soil degradation. Critical analysis of available information shows that problems of degradation of soil health are caused due to imbalanced, inadequate and promacronutrient fertilizer use, inadequate use or no use of organic manures and crop residues, and less use of good quality biofertilizers. Although sizeable amount of crop residues and manure is produced in farms, it is becoming increasingly complex to recycle nutrients, even within agricultural systems. Therefore, there is a need to use all available sources of nutrients to maintain the productivity and fertility at a required level. Among the available organic sources of plant nutrients, crop residue is one of the most important sources for supplying nutrients to the crop and for improving soil health. Sunflower is a nontraditional oil seed crop produced in huge amount of crop residue. This much amount of crop residues is neither used as feed for livestock nor suitable for fuel due to low energy value per unit mass. However, its residue contains major plant nutrients in the range from 0.45 to 0.60% N, 0.15 to 0.22% P, and 1.80 to 1.94% K along with secondary and micronutrients, so recycling of its residue in the soil may be one of the best alternative practices for replenishing the depleted soil fertility and improving the physical, chemical, and biological properties of the soil in the present era of production. However, some researchers have reported allelopathic effects of sunflower residue on different crops. So, selection of suitable crops and management practices may play an important role to manage the sunflower residue at field level.