About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2012 (2012), Article ID 259217, 7 pages
http://dx.doi.org/10.1155/2012/259217
Research Article

Characterisation of Flavonoid Aglycones by Negative Ion Chip-Based Nanospray Tandem Mass Spectrometry

1School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
2Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Via do Café S/N, 14040-903 Ribeirão Preto, SP, Brazil

Received 26 September 2011; Accepted 20 November 2011

Academic Editor: Michael Niehues

Copyright © 2012 Paul J. Gates and Norberto P. Lopes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kanashiro, L. M. Kabeya, A. C. M. Polizello, N. P. Lopes, J. L. C. Lopes, and Y. M. Lucisano-Valim, “Inhibitory activity of flavonoids from Lychnophora sp. on generation of reactive oxygen species by neutrophils upon stimulation by immune complexes,” Phytotherapy Research, vol. 18, no. 1, pp. 61–65, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Chicaro, E. Pinto, P. Colepicolo, J. L. C. Lopes, and N. P. Lopes, “Flavonoids from Lychnophora passerina (Asteraceae): potential antioxidants and UV-protectants,” Biochemical Systematics and Ecology, vol. 32, no. 3, pp. 239–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Takeara, S. Albuquerque, N. P. Lopes, and J. L. C. Lopes, “Trypanocidal activity of Lychnophora staavioides Mart. (Vernonieae, Asteraceae),” Phytomedicine, vol. 10, no. 6-7, pp. 490–493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. P. Lopes, P. Chicaro, M. J. Kato, S. Albuquerque, and M. Yoshida, “Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi,” Planta Medica, vol. 64, no. 7, pp. 667–669, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. L. Gobbo-Neto, M. D. Santos, A. Kanashiro et al., “Evaluation of the anti-inflammatory and antioxidant activities of di-C-glucosylflavones from Lychnophora ericoides (Asteraceae),” Planta Medica, vol. 71, no. 1, pp. 3–6, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. N. P. Lopes, M. J. Kato, and M. Yoshida, “Antifungal constituents from roots of Virolasurinamensis,” Phytochemistry, vol. 51, no. 1, pp. 29–33, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Harborne and C. A. Williams, “Anthocyanins and other flavonoids,” Natural Product Reports, vol. 18, no. 3, pp. 310–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Williams and R. J. Grayer, “Anthocyanins and other flavonoids,” Natural Product Reports, vol. 21, no. 4, pp. 539–573, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. T. Guaratini, R. L. Vessecchi, F. C. Lavarda et al., “New chemical evidence for the ability to generate radical molecular ions of polyenes from ESI and HR-MALDI mass spectrometry,” Analyst, vol. 129, no. 12, pp. 1223–1226, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. T. Guaratini, R. Vessecchi, E. Pinto, P. Colepicolo, and N. P. Lopes, “Balance of xanthophylls molecular and protonated molecular ions in electrospray ionization,” Journal of Mass Spectrometry, vol. 40, no. 7, pp. 963–968, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. E. M. Crotti, R. Vessecchi, J. L. C. Lopes, and N. P. Lopes, “Electrospray ionization mass spectrometry: chemical processes invoeved in the ion formation from low molecular weight organic compounds,” Química Nova, vol. 29, no. 2, pp. 287–292, 2006. View at Scopus
  12. A. E. M. Crotti, J. L. C. Lopes, and N. P. Lopes, “Triple quadrupole tandem mass spectrometry of sesquiterpene lactones: a study of goyazensolide and its congeners,” Journal of Mass Spectrometry, vol. 40, no. 8, pp. 1030–1034, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Pivatto, A. E. M. Crotti, N. P. Lopes et al., “Electrospray ionization mass spectrometry screening of piperidine alkaloids from Senna spectabilis (Fabaceae) extracts: fast identification of new constituents and co-metabolites,” Journal of the Brazilian Chemical Society, vol. 16, no. 6, pp. 1431–1438, 2005. View at Scopus
  14. A. Fredenhagen, C. Derrien, and E. Gassmann, “An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M+H]+ and [M+Na]+ ions,” Journal of Natural Products, vol. 68, no. 3, pp. 385–391, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Wilm and M. Mann, “Analytical properties of the nanoelectrospray ion source,” Analytical Chemistry, vol. 68, no. 1, pp. 1–8, 1996. View at Scopus
  16. G. A. Schultz, T. N. Corso, S. J. Prosser, and S. Zhang, “A fully integrated monolithic microchip electrospray device for mass spectrometry,” Analytical Chemistry, vol. 72, no. 17, pp. 4058–4063, 2000. View at Scopus
  17. T. Guaratini, P. J. Gates, K. H. M. Cardozo, P. M. B. G. M. Campos, P. Colepicolo, and N. P. Lopes, “Letter: radical ion and protonated molecule formation with retinal in electrospray and nanospray,” European Journal of Mass Spectrometry, vol. 12, no. 1, pp. 71–74, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. T. Guaratini, P. J. Gates, E. Pinto, P. Colepicolo, and N. P. Lopes, “Differential ionisation of natural antioxidant polyenes in electrospray and nanospray mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 21, no. 23, pp. 3842–3848, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. P. A. dos Santos, J. L. C. Lopes, and N. P. Lopes, “Triterpenoids and flavonoids from Lychnophoriopsis candelabrum (Asteraceae),” Biochemical Systematics and Ecology, vol. 32, no. 5, pp. 509–512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. P. Lopes, C. B. W. Stark, H. Hong, P. J. Gates, and J. Staunton, “A study of the effect of pH, solvent system, cone potential and the addition of crown ethers on the formation of the monensin protonated parent ion in electrospray mass spectrometry,” Analyst, vol. 126, no. 10, pp. 1630–1632, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Fabre, I. Rustan, E. de Hoffmann, and J. Quetin-Leclercq, “Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 12, no. 6, pp. 707–715, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. K. H. M. Cardozo, R. Vessecchi, V. M. Carvalho et al., “A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids,” International Journal of Mass Spectrometry, vol. 21, pp. 3842–3848, 2008.
  23. U. Justesen, “Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry,” Journal of Mass Spectrometry, vol. 36, no. 2, pp. 169–178, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. N. P. Lopes, T. Fonseca, J. P. G. Wilkins, J. Staunton, and P. J. Gates, “Novel gas-phase ion-molecule aromatic nucleophilic substitution in β-carbolines,” Chemical Communications, vol. 9, no. 1, pp. 72–73, 2003. View at Publisher · View at Google Scholar · View at Scopus