About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2012 (2012), Article ID 282574, 40 pages
http://dx.doi.org/10.1155/2012/282574
Review Article

Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte

Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India

Received 9 August 2011; Revised 23 October 2011; Accepted 9 November 2011

Academic Editor: Troy D. Wood

Copyright © 2012 Shibdas Banerjee and Shyamalava Mazumdar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Thomson, Rays of Positive Electricity and Their Applications to Chemical Analysis, Longmans Green, London, UK, 1913.
  2. M. Grayson, “John Bennett Fenn: a curious road to the prize,” Journal of The American Society for Mass Spectrometry, vol. 22, no. 8, pp. 1301–1308, 2011.
  3. M. Barber, R. S. Bordoli, R. D. Sedgwick, and A. N. Tyler, “Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry,” Journal of the Chemical Society, Chemical Communications, no. 7, pp. 325–327, 1981. View at Scopus
  4. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, “Electrospray ionization for mass spectrometry of large biomolecules,” Science, vol. 246, no. 4926, pp. 64–71, 1989. View at Scopus
  5. M. Przybylski and M. O. Glocker, “Electrospray mass spectrometry of biomacromolecular complexes with noncovalent interactions—New analytical perspectives for supramolecular chemistry and molecular recognition processes,” Angewandte Chemie, vol. 35, no. 8, pp. 807–826, 1996. View at Scopus
  6. B. Domon and R. Aebersold, “Mass spectrometry and protein analysis,” Science, vol. 312, no. 5771, pp. 212–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Fenn, “Electrospray wings for molecular elephants (Nobel lecture),” Angewandte Chemie, vol. 42, no. 33, pp. 3871–3894, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Ouyang, Z. Takáts, T. A. Blake et al., “Preparing protein microarrays by soft-landing of mass-selected ions,” Science, vol. 301, no. 5638, pp. 1351–1354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Gologan, Z. Takáts, J. Alvarez et al., “Ion soft-landing into liquids: protein identification, separation, and purification with retention of biological activity,” Journal of the American Society for Mass Spectrometry, vol. 15, no. 12, pp. 1874–1884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Wilson and Y. Wu, “Applications of electrospray ionization mass spectrometry to neutral organic molecules including fullerenes,” Journal of the American Society for Mass Spectrometry, vol. 4, no. 7, pp. 596–603, 1993. View at Scopus
  11. C. E. C. A. Hop and R. Bakhtiar, “Electrospray ionization mass spectrometry. Part III: applications in inorganic chemistry and synthetic polymer chemistry,” Journal of Chemical Education, vol. 73, no. 8, pp. A162–A169, 1996. View at Scopus
  12. M. J. Keith-Roach, “A review of recent trends in electrospray ionisation-mass spectrometry for the analysis of metal-organic ligand complexes,” Analytica Chimica Acta, vol. 678, no. 2, pp. 140–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Leito, K. Herodes, M. Huopolainen et al., “Towards the electrospray ionization mass spectrometry ionization efficiency scale of organic compounds,” Rapid Communications in Mass Spectrometry, vol. 22, no. 3, pp. 379–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Oss, A. Kruve, K. Herodes, and I. Leito, “Electrospray ionization efficiency scale of organic compound,” Analytical Chemistry, vol. 82, no. 7, pp. 2865–2872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. G. Baily, Electrostatic Spraying of Liquids, John Wiley & Sons, New York, NY, USA, 1988.
  16. M. Dole, L. L. Mack, R. L. Hines et al., “Molecular beams of macroions,” The Journal of Chemical Physics, vol. 49, no. 5, pp. 2240–2249, 1968. View at Scopus
  17. L. L. Mack, P. Kralik, A. Rheude, and M. Dole, “Molecular beams of macroions. II,” The Journal of Chemical Physics, vol. 52, no. 10, pp. 4977–4986, 1970. View at Scopus
  18. M. Yamashita and J. B. Fenn, “Electrospray ion source. Another variation on the free-jet theme,” Journal of Physical Chemistry, vol. 88, no. 20, pp. 4451–4459, 1984. View at Scopus
  19. M. Yamashita and J. B. Fenn, “Negative ion production with the electrospray ion source,” Journal of Physical Chemistry, vol. 88, no. 20, pp. 4671–4675, 1984. View at Scopus
  20. C. M. Whitehouse, R. N. Dreyer, M. Yamashita, and J. B. Fenn, “Electrospray interface for liquid chromatographs and mass spectrometers,” Analytical Chemistry, vol. 57, no. 3, pp. 675–679, 1985. View at Scopus
  21. A. P. Bruins, “Mass spectrometry with ion sources operating at atmospheric pressure,” Mass Spectrometry Reviews, vol. 10, no. 1, pp. 53–77, 1991. View at Scopus
  22. P. Kebarle and L. Tang, “From ions in solution to ions in the gas phase: the mechanism of electrospray mass spectrometry,” Analytical Chemistry, vol. 65, no. 22, pp. 972A–986A, 1993. View at Scopus
  23. M. Karas, U. Bahr, and T. Dülcks, “Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine,” Fresenius' Journal of Analytical Chemistry, vol. 366, no. 6-7, pp. 669–676, 2000. View at Scopus
  24. J. F. Anacleto, S. Pleasance, and R. K. Boyd, “Calibration of ion spray mass spectra using cluster ions,” Organic Mass Spectrometry, vol. 27, pp. 660–666, 1992.
  25. C. E. C. A. Hop, “Generation of high molecular weight cluster ions by electrospray ionization; implications for mass calibration,” Journal of Mass Spectrometry, vol. 31, pp. 1314–1316, 1996.
  26. A. P. Bruins, T. R. Covey, and J. D. Henion, “Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry,” Analytical Chemistry, vol. 59, no. 22, pp. 2642–2646, 1987. View at Scopus
  27. T. R. Covey, A. P. Bruins, and J. D. Henion, “Comparison of thermospray and ion spray mass spectrometry in an atmospheric pressure ion source,” Organic Mass Spectrometry, vol. 23, pp. 178–186, 1988.
  28. M. G. Ikonomou, A. T. Blades, and P. Kebarle, “Electrospray-ion spray: a comparison of mechanisms and performance,” Analytical Chemistry, vol. 63, no. 18, pp. 1989–1998, 1991. View at Scopus
  29. J. F. Banks, J. P. Quinn, and C. M. Whilehouse, “LC/ESI-MS determination of proteins using conventional liquid chromatography and ultrasonically assisted electrospray,” Analytical Chemistry, vol. 66, no. 21, pp. 3688–3695, 1994. View at Scopus
  30. J. F. Banks, S. Shen, C. M. Whitehouse, and J. B. Fenn, “Ultrasonically assisted electrospray ionization for LC/MS determination of nucleosides from a transfer RNA digest,” Analytical Chemistry, vol. 66, no. 3, pp. 406–414, 1994. View at Scopus
  31. Z. Takáts, J. M. Wiseman, B. Gologan, and R. G. Cooks, “Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure,” Analytical Chemistry, vol. 76, no. 14, pp. 4050–4058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Wilm and M. Mann, “Analytical properties of the nanoelectrospray ion source,” Analytical Chemistry, vol. 68, no. 1, pp. 1–8, 1996. View at Scopus
  33. E. D. Hoffmann and V. Stroobant, Mass Spectrometry Principles and Applications, John Wiley & Sons, Chichester, UK, 2nd edition, 2001.
  34. J. H. Gross, Mass Spectrometry, Springer, Heidelberg, Germany, 2004.
  35. R. E. March, “An introduction to quadrupole ion trap mass spectrometry,” Journal of Mass Spectrometry, vol. 32, no. 4, pp. 351–369, 1997. View at Scopus
  36. J. S. Allen, “An improved electron multiplier particle counter,” Review of Scientific Instruments, vol. 18, no. 10, pp. 739–749, 1947. View at Publisher · View at Google Scholar · View at Scopus
  37. H. E. Stanton, W. A. Chupka, and M. G. Inghram, “Electron multipliers in mass spectrometry; effect of molecular structure,” Review of Scientific Instruments, vol. 27, no. 2, p. 109, 1956. View at Publisher · View at Google Scholar · View at Scopus
  38. I. J. Amster, “Fourier transform mass spectrometry,” Journal of Mass Spectrometry, vol. 31, no. 12, pp. 1325–1337, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. J. B. Fenn, “Ion formation from charged droplets: roles of geometry, energy, and time,” Journal of the American Society for Mass Spectrometry, vol. 4, no. 7, pp. 524–535, 1993. View at Scopus
  40. J. F. J. Todd, “Recommendations for nomenclature and symbolism for mass spectroscopy,” Pure and Applied Chemistry, vol. 63, pp. 1541–1566, 1991.
  41. T. R. Covey, R. F. Bonner, B. I. Shushan, and J. Henion, “The determination of protein, oligonucleotide and peptide molecular weights by ion-spray mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 2, no. 11, pp. 249–256, 1988. View at Scopus
  42. J. R. Chapman, R. T. Gallagher, E. C. Barton, J. M. Curtis, and P. J. Derrick, “Advantages of high-resolution and high-mass range magnetic-sector mass spectrometry for electrospray ionization,” Organic Mass Spectrometry, vol. 27, pp. 195–203, 1992.
  43. M. Mann, C. K. Meng, and J. B. Fenn, “Interpreting mass spectra of multiply charged ions,” Analytical Chemistry, vol. 61, no. 15, pp. 1702–1708, 1989. View at Scopus
  44. M. Labowsky, C. Whitehouse, and J. B. Fenn, “Three-dimensional deconvolution of multiply charged spectra,” Rapid Communications in Mass Spectrometry, vol. 7, pp. 71–84, 1993.
  45. G. Wang and R. B. Cole, “Effect of solution intic strength on analyte charge state distributions in positive and negative ion electrospray mass spectrometry,” Analytical Chemistry, vol. 66, no. 21, pp. 3702–3708, 1994. View at Scopus
  46. R. Guevremont, K. W. M. Siu, J. C. Y. Le Blanc, and S. S. Berman, “Are the electrospray mass spectra of proteins related to their aqueous solution chemistry?” Journal of the American Society for Mass Spectrometry, vol. 3, no. 3, pp. 216–224, 1992. View at Scopus
  47. M. A. Kelly, M. M. Vestling, C. C. Fenselau, and P. B. Smith, “Electrospray analysis of proteins: a comparison of positive-ion and negative-ion mass spectra at high and low pH,” Organic Mass Spectrometry, vol. 27, pp. 1143–1147, 1992.
  48. G. Wang and R. B. Cole, “Disparity between solution-phase equilibria and charge state distributions in positive-ion electrospray mass spectrometry,” Organic Mass Spectrometry, vol. 29, pp. 419–427, 1994.
  49. J. C. Y. Le Blanc, J. Wang, R. Guevremont, and K. W. M. Siu, “Electrospray mass spectra of protein cations formed in basic solutions,” Organic Mass Spectrometry, vol. 29, pp. 587–593, 1994.
  50. J. A. Loo, C. G. Edmonds, H. R. Udseth, and R. D. Smith, “Effect of reducing disulfide-containing proteins on electrospray ionization mass spectra,” Analytical Chemistry, vol. 62, no. 7, pp. 693–698, 1990. View at Scopus
  51. R. D. Smith, J. A. Loo, R. R. Ogorzalek Loo, M. Busman, and H. R. Udseth, “Principles and practice of electrospray ionization-mass spectrometry for large polypeptides and proteins,” Mass Spectrometry Reviews, vol. 10, no. 5, pp. 359–451, 1991. View at Scopus
  52. M. Cloupeau and B. Prunet-Foch, “Electrostatic spraying of liquids: main functioning,” Journal of Electrostatics, vol. 25, pp. 165–184, 1990.
  53. R. B. Cole, “Some tenets pertaining to electrospray ionization mass spectrometry,” Journal of Mass Spectrometry, vol. 35, no. 7, pp. 763–772, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Kebarle and M. Peschke, “On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions,” Analytica Chimica Acta, vol. 406, no. 1, pp. 11–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. N. B. Cech and C. G. Enke, “Practical implications of some recent studies in electrospray ionization fundamentals,” Mass Spectrometry Reviews, vol. 20, no. 6, pp. 362–387, 2001.
  56. A. T. Blades, M. G. Ikonomou, and P. Kebarle, “Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell,” Analytical Chemistry, vol. 63, no. 19, pp. 2109–2114, 1991. View at Scopus
  57. G. Diehl and U. Karst, “On-line electrochemistry—MS and related techniques,” Analytical and Bioanalytical Chemistry, vol. 373, no. 6, pp. 390–398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. R. B. Cole, Electrospray and MALDI Mass Spectrometry, John Wiley & Sons, New Jersey, NJ, USA, 2010.
  59. G. Taylor, “Disintegration of water drops in an electric field,” Proceedings of the Royal Society of London A, vol. 280, pp. 383–397, 1964.
  60. M. S. Wilm and M. Mann, “Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?” International Journal of Mass Spectrometry and Ion Processes, vol. 136, no. 2-3, pp. 167–180, 1994. View at Scopus
  61. J. Fernandez De La Mora, “Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism,” Analytica Chimica Acta, vol. 406, no. 1, pp. 93–104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity,” Philosophical Magazine, pp. 184–186, 1882.
  63. J. V. Iribarne and B. A. Thomson, “On the evaporation of small ions from charged droplets,” The Journal of Chemical Physics, vol. 64, no. 6, pp. 2287–2294, 1976. View at Scopus
  64. A. Gomez and K. Tang, “Charge and fission of droplets in electrostatic sprays,” Physics of Fluids, vol. 6, no. 1, pp. 404–414, 1994. View at Scopus
  65. D. B. Hager, N. J. Dovichi, J. Klassen, and P. Kebarle, “Droplet electrospray mass spectrometry,” Analytical Chemistry, vol. 66, no. 22, pp. 3944–3949, 1994.
  66. D. Duft, T. Achtzehn, R. Müller, B. A. Huber, and T. Leisner, “Coulomb fission: rayleigh jets from levitated microdroplets,” Nature, vol. 421, no. 6919, p. 128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. M. G. Ikonomou, A. T. Blades, and P. Kebarle, “Investigations of the electrospray interface for liquid chromatography/mass spectrometry,” Analytical Chemistry, vol. 62, no. 9, pp. 957–967, 1990. View at Scopus
  68. G. Schmelzeisen-Redeker, L. Bütfering, and F. W. Röllgen, “Desolvation of ions and molecules in thermospray mass spectrometry,” International Journal of Mass Spectrometry and Ion Processes, vol. 90, no. 2, pp. 139–150, 1989. View at Scopus
  69. S. Nguyen and J. B. Fenn, “Gas-phase ions of solute species from charged droplets of solutions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 4, pp. 1111–1117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. B. E. Winger, K. J. Light-Wahl, R. R. Ogorzalek Loo, H. R. Udseth, and R. D. Smith, “Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 4, no. 7, pp. 536–545, 1993. View at Scopus
  71. L. P. Tolić, G. A. Anderson, R. D. Smith, H. M. Brothers, R. Spindler, and D. A. Tomalia, “Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass Starburst dendrimers,” International Journal of Mass Spectrometry and Ion Processes, vol. 165-166, pp. 405–418, 1997. View at Scopus
  72. S. J. Valentine, J. G. Anderson, A. D. Ellington, and D. E. Clemmer, “Disulfide-intact and-reduced lysozyme in the gas phase: conformations and pathways of folding and unfolding,” Journal of Physical Chemistry B, vol. 101, no. 19, pp. 3891–3900, 1997. View at Scopus
  73. B. A. Thomson and J. V. Iribarne, “Field induced ion evaporation from liquid surfaces at atmospheric pressure,” The Journal of Chemical Physics, vol. 71, no. 11, pp. 4451–4463, 1979. View at Scopus
  74. P. Kebarle, “A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry,” Journal of Mass Spectrometry, vol. 35, no. 7, pp. 804–817, 2000.
  75. Z. Olumee, J. H. Callahan, and A. Vertes, “Droplet dynamics changes in electrostatic sprays of methanol—Water mixtures,” Journal of Physical Chemistry A, vol. 102, no. 46, pp. 9154–9160, 1998. View at Scopus
  76. I. A. Kaltashov and R. R. Abzalimov, “Do ionic charges in ESI MS provide useful information on macromolecular structure?” Journal of the American Society for Mass Spectrometry, vol. 19, no. 9, pp. 1239–1246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. I. A. Kaltashov and A. Mohimen, “Estimates of protein surface areas in solution by electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 77, no. 16, pp. 5370–5379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Prakash and S. Mazumdar, “Direct correlation of the crystal structure of proteins with the maximum positive and negative charge states of gaseous protein ions produced by electrospray ionization,” Journal of the American Society for Mass Spectrometry, vol. 16, no. 9, pp. 1409–1421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Grandori, “Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry,” Journal of Mass Spectrometry, vol. 38, no. 1, pp. 11–15, 2003.
  80. L. Konermann and D. J. Douglas, “Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure,” Biochemistry, vol. 36, no. 40, pp. 12296–12302, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Konermann and D. J. Douglas, “Unfolding of proteins monitored by electrospray ionization mass spectrometry: a comparison of positive and negative ion modes,” Journal of the American Society for Mass Spectrometry, vol. 9, no. 12, pp. 1248–1254, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. A. K. Frimpong, R. R. Abzalimov, S. J. Eyles, and I. A. Kaltashov, “Gas-phase interference-free analysis of protein ion charge-state distributions: detection of small-scale conformational transitions accompanying pepsin inactivation,” Analytical Chemistry, vol. 79, no. 11, pp. 4154–4161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. V. J. Nesatyy, “On the conformation-dependent neutralization theory and charging of individual proteins and their non-covalent complexes in the gas phase,” Journal of Mass Spectrometry, vol. 39, no. 1, pp. 93–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Grandori, “Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry,” Journal of Mass Spectrometry, vol. 38, no. 1, pp. 11–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. U. H. Verkerk, M. Peschke, and P. Kebarle, “Effect of buffer cations and of H3O+ on the charge states of native proteins. Significance to determinations of stability constants of protein complexes,” Journal of Mass Spectrometry, vol. 38, no. 6, pp. 618–631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. R. R. Julian, R. Hodyss, and J. L. Beauchamp, “Salt bridge stabilization of charged zwitterionic arginine aggregates in the gas phase,” Journal of the American Chemical Society, vol. 123, no. 15, pp. 3577–3583, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. P. D. Schnier, D. S. Gross, and E. R. Williams, “On the maximum charge state and proton transfer reactivity of peptide and protein ions formed by electrospray ionization,” Journal of the American Society for Mass Spectrometry, vol. 6, no. 11, pp. 1086–1097, 1995. View at Scopus
  88. J. R. Chapman, Mass Spectrometry of Protein and Peptides, Humana Press, New Jersey, NJ, USA, 2000.
  89. T. B. McMahon and G. Ohanessian, “An experimental and ab initio study of the nature of the binding in gas-phase complexes of sodium ions,” Chemistry A, vol. 6, no. 16, pp. 2931–2941, 2000. View at Scopus
  90. S. Hoyau, K. Norrman, T. B. McMahon, and G. Ohanessian, “A quantitative basis for a scale of Na+ affinities of organic and small biological molecules in the gas phase,” Journal of the American Chemical Society, vol. 121, no. 38, pp. 8864–8875, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. U. H. Verkerk and P. Kebarle, “Ion-ion and ion-molecule reactions at the surface of proteins produced by nanospray. Information on the number of acidic residues and control of the number of ionized acidic and basic residues,” Journal of the American Society for Mass Spectrometry, vol. 16, no. 8, pp. 1325–1341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Prakash, B. T. Kansara, and S. Mazumdar, “Effects of salts on the charge-state distribution and the structural basis of the most-intense charge-state of the gaseous protein ions produced by electrospray ionization,” International Journal of Mass Spectrometry, vol. 289, no. 2-3, pp. 84–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Felitsyn, M. Peschke, and P. Kebarle, “Origin and number of charges observed on multiply-protonated native proteins produced by ESI,” International Journal of Mass Spectrometry, vol. 219, no. 1, pp. 39–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Peschke, A. Blades, and P. Kebarle, “Charged states of proteins. Reactions of doubly protonated alkyldiamines with NH3: solvation or deprotonation. Extension of two proton cases to multiply protonated globular proteins observed in the gas phase,” Journal of the American Chemical Society, vol. 124, no. 38, pp. 11519–11530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. W. Z. Shou and W. Naidong, “Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phases in the hydrophilic interaction chromatography-electrospray tandem mass spectrometric (HILIC-ESI/MS/MS) bioanalysis of basic compounds,” Journal of Chromatography B, vol. 825, no. 2, pp. 186–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. A. T. Iavarone, J. C. Jurchen, and E. R. Williams, “Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization,” Journal of the American Society for Mass Spectrometry, vol. 11, no. 11, pp. 976–985, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. R. R. Ogorzalek Loo, B. E. Winger, and R. D. Smith, “Proton transfer reaction studies of multiply charged proteins in a high mass-to-charge ratio quadrupole mass spectrometer,” Journal of the American Society for Mass Spectrometry, vol. 5, no. 12, pp. 1064–1071, 1994. View at Scopus
  98. B. E. Winger, K. J. Light-Wahl, and S. Richard, “Gas-phase proton transfer reactions involving multiply charged cytochrome c ions and water under thermal conditions,” Journal of the American Society for Mass Spectrometry, vol. 3, no. 6, pp. 624–630, 1992. View at Scopus
  99. J. D. Carbeck, J. C. Severs, J. Gao, Q. Wu, R. D. Smith, and G. M. Whitesides, “Correlation between the charge of proteins in solution and in the gas phase investigated by protein charge ladders, capillary electrophoresis, and electrospray ionization mass spectrometry,” Journal of Physical Chemistry B, vol. 102, no. 51, pp. 10596–10601, 1998. View at Scopus
  100. A. T. Iavarone and E. R. Williams, “Mechanism of charging and supercharging molecules in electrospray ionization,” Journal of the American Chemical Society, vol. 125, no. 8, pp. 2319–2327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. A. T. Iavarone, J. C. Jurchen, and E. R. Williams, “Supercharged protein and peptide ions formed by electrospray ionization,” Analytical Chemistry, vol. 73, no. 7, pp. 1455–1460, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. J. A. Loo, R. R. Loo, H. R. Udseth, C. G. Edmonds, and R. D. Smith, “Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 5, no. 3, pp. 101–105, 1991. View at Scopus
  103. R. B. Cole and A. K. Harrata, “Solvent effect on analyte charge state, signal intensity, and stability in negative ion electrospray mass spectrometry; implications for the mechanism of negative ion formation,” Journal of the American Society for Mass Spectrometry, vol. 4, pp. 546–556, 1993.
  104. H. J. Sterling and E. R. Williams, “Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution,” Journal of the American Society for Mass Spectrometry, vol. 20, no. 10, pp. 1933–1943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. H. J. Sterling, M. P. Daly, G. K. Feld et al., “Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions,” Journal of the American Society for Mass Spectrometry, vol. 21, no. 10, pp. 1762–1774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. S. H. Lomeli, I. X. Peng, S. Yin, R. R. Ogorzalek Loo, and J. A. Loo, “New reagents for increasing ESI multiple charging of proteins and protein complexes,” Journal of the American Society for Mass Spectrometry, vol. 21, no. 1, pp. 127–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. D. F. Hunt, J. R. Yates III, and J. Shabanowitz, “Protein sequencing by tandem mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 17, pp. 6233–6237, 1986.
  108. J. A. Loo, J. P. Quinn, S. I. Ryu, K. D. Henry, M. W. Senko, and F. W. McLafferty, “High-resolution tandem mass spectrometry of large biomolecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 1, pp. 286–289, 1992. View at Scopus
  109. A. T. Iavarone and E. R. Williams, “Collisionally activated dissociation of supercharged proteins formed by electrospray ionization,” Analytical Chemistry, vol. 75, no. 17, pp. 4525–4533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. X. Han, M. Jin, K. Breuker, and F. W. McLafferty, “Extending top-down mass spectrometry to proteins with masses great than 200 kilodaltons,” Science, vol. 314, no. 5796, pp. 109–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. S. A. McLuckey and J. L. Stephenson, “Ion/ion chemistry of high-mass multiply charged ions,” Mass Spectrometry Reviews, vol. 17, no. 6, pp. 369–407, 1998. View at Scopus
  112. S. J. Pitteri and S. A. McLuckey, “Recent developments in the ion/ion chemistry of high-mass multiply charged ions,” Mass Spectrometry Reviews, vol. 24, no. 6, pp. 931–958, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. E. R. Williams, “Proton transfer reactivity of large multiply charged ions,” Journal of Mass Spectrometry, vol. 31, no. 8, pp. 831–842, 1996. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Kharlamova and S. A. McLuckey, “Negative electrospray droplet exposure to gaseous bases for the manipulation of protein charge state distributions,” Analytical Chemistry, vol. 83, no. 1, pp. 431–437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Kharlamova, B. M. Prentice, T. Y. Huang, and S. A. McLuckey, “Electrospray droplet exposure to gaseous acids for the manipulation of protein charge state distributions,” Analytical Chemistry, vol. 82, no. 17, pp. 7422–7429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. C. J. Krusemark, B. L. Frey, P. J. Belshaw, and L. M. Smith, “Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization,” Journal of the American Society for Mass Spectrometry, vol. 20, no. 9, pp. 1617–1625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. B. L. Frey, C. J. Krusemark, A. R. Ledvina, J. J. Coon, P. J. Belshaw, and L. M. Smith, “Ion-ion reactions with fixed-charge modified proteins to produce ions in a single, very high charge state,” International Journal of Mass Spectrometry, vol. 276, no. 2-3, pp. 136–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Tang and P. Kebarle, “Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution,” Analytical Chemistry, vol. 65, no. 24, pp. 3654–3667, 1993. View at Scopus
  119. G. Wang and R. B. Cole, “Mechanistic interpretation of the dependence of charge state distributions on analyte concentrations in electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 67, no. 17, pp. 2892–2900, 1995. View at Scopus
  120. L. Tang and P. Kebarle, “Effect of the conductivity of the electrosprayed solution on the electrospray current. Factors determining analyte sensitivity in electrospray mass spectrometry,” Analytical Chemistry, vol. 63, no. 23, pp. 2709–2715, 1991. View at Scopus
  121. C. G. Enke, “A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes,” Analytical Chemistry, vol. 69, no. 23, pp. 4885–4893, 1997. View at Scopus
  122. T. L. Constantopoulos, G. S. Jackson, and C. G. Enke, “Effects of salt concentration on analyte response using electrospray ionization mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 10, no. 7, pp. 625–634, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Li and R. B. Cole, “Shifts in peptide and protein charge state distributions with varying spray tip orifice diameter in nanoelectrospray fourier transform ion cycltron resonance mass spectrometry,” Analytical Chemistry, vol. 75, no. 21, pp. 5739–5746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. W. M. A. Niessen, “State-of-the-art in liquid chromatography–mass spectrometry,” Journal of Chromatography A, vol. 856, pp. 179–197, 1999.
  125. R. D. Voyksner and H. Lee, “Improvements in LC/electrospray ion trap mass spectrometry performance using an off-axis nebulizer,” Analytical Chemistry, vol. 71, no. 7, pp. 1441–1447, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. V. Gabelica, E. De Pauw, and M. Karas, “Influence of the capillary temperature and the source pressure on the internal energy distribution of electrosprayed ions,” International Journal of Mass Spectrometry, vol. 231, no. 2-3, pp. 189–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Busman, A. L. Rockwood, and R. D. Smith, “Activation energies for gas-phase dissociations of multiply charged ions from electrospray ionization mass spectrometry,” Journal of Physical Chemistry, vol. 96, no. 6, pp. 2397–2400, 1992. View at Scopus
  128. M. J. Van Stipdonk, M. P. Ince, B. A. Perera, and J. A. Martin, “Cluster ions derived from sodium and potassium tetrafluoroborate and their collision induced dissociation in an ion trap mass spectrometer,” Rapid Communications in Mass Spectrometry, vol. 16, no. 5, pp. 355–363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. R. D. Smith, J. A. Loo, C. J. Barinaga, C. G. Edmonds, and H. R. Udseth, “Collisional activation and collision-activated dissociation of large multiply charged polypeptides and proteins produced by electrospray ionization,” Journal of the American Society for Mass Spectrometry, vol. 1, no. 1, pp. 53–65, 1990. View at Scopus
  130. B. A. Thomson, “Declustering and fragmentation of protein ions from an electrospray ion source,” Journal of the American Society for Mass Spectrometry, vol. 8, no. 10, pp. 1053–1058, 1997. View at Publisher · View at Google Scholar · View at Scopus
  131. D. S. Ashton, C. R. Beddell, D. J. Cooper, B. N. Green, and R. W. A. Oliver, “Mechanism of production of ions in electrospray mass spectrometry,” Organic Mass Spectrometry, vol. 28, pp. 721–728, 1993.
  132. R. D. Smith, K. J. Light-Wahl, B. E. Winger, and J. A. Loo, “Preservation of non-covalent associations in electrospray ionization mass spectrometry: multiply charged polypeptide and protein dimers,” Organic Mass Spectrometry, vol. 27, pp. 811–821, 1992.
  133. G. J. Van Berkel, F. Zhou, and J. T. Aronson, “Changes in bulk solution pH caused by the inherent controlled-current electrolytic process of an electrospray ion source,” International Journal of Mass Spectrometry and Ion Processes, vol. 162, no. 1–3, pp. 55–67, 1997. View at Scopus
  134. S. Zhou, A. G. Edwards, K. D. Cook, and G. J. Van Berkel, “Investigation of the electrospray plume by laser-induced fluorescence spectroscopy,” Analytical Chemistry, vol. 71, no. 4, pp. 769–776, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. C. L. Gatlin and F. Tureček, “Acidity determination in droplets formed by electrospraying methanol-water solutions,” Analytical Chemistry, vol. 66, no. 5, pp. 712–718, 1994. View at Scopus
  136. S. E. Rodriguez-Cruz, J. T. Khoury, and J. H. Parks, “Protein fluorescence measurements within electrospray droplets,” Journal of the American Society for Mass Spectrometry, vol. 12, no. 6, pp. 716–725, 2001. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Breuker and F. W. McLafferty, “Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12 to 102 s,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18145–18152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. T. D. Wood, R. A. Chorush, F. M. Wampler, D. P. Little, P. B. O'Connor, and F. W. McLafferty, “Gas-phase folding and unfolding of cytochrome c cations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2451–2454, 1995. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Banerjee, H. Prakash, and S. Mazumdar, “Evidence of molecular fragmentation inside the charged droplets produced by electrospray process,” Journal of the American Society for Mass Spectrometry, vol. 22, no. 10, pp. 1707–1717, 2011. View at Publisher · View at Google Scholar
  140. A. M. Gañán-Calvo, “The surface charge in electrospraying: its nature and its universal scaling laws,” Journal of Aerosol Science, vol. 30, no. 7, pp. 863–872, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. Oxford English Dictionary, Oxford University Press, 2nd edition, 1989.
  142. F. W. McLafferty, Tandem Mass Spectrometry, John Wiley & Sons, New York, NY, USA, 1983.
  143. S. A. McLuckey, “Principles of collisional activation in analytical mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 3, no. 6, pp. 599–614, 1992. View at Scopus
  144. A. L. McCormack, J. L. Jones, and V. H. Wysocki, “Surface-induced dissociation of multiply protonated peptides,” Journal of the American Society for Mass Spectrometry, vol. 3, no. 8, pp. 859–862, 1992. View at Scopus
  145. R. A. Chorush, D. P. Little, S. C. Beu, T. D. Wood, and F. W. McLafferty, “Surface-induced dissociation of multiply-protonated proteins,” Analytical Chemistry, vol. 67, no. 6, pp. 1042–1046, 1995. View at Scopus
  146. D. P. Little, J. P. Speir, M. W. Senko, P. B. O'Connor, and F. W. McLafferty, “Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing,” Analytical Chemistry, vol. 66, no. 18, pp. 2809–2815, 1994. View at Publisher · View at Google Scholar · View at Scopus
  147. W. D. Price, P. D. Schnier, and E. R. Williams, “Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation,” Analytical Chemistry, vol. 68, no. 5, pp. 859–866, 1996. View at Publisher · View at Google Scholar · View at Scopus
  148. R. C. Dunbar and T. B. McMahon, “Activation of unimolecular reactions by ambient blackbody radiation,” Science, vol. 279, no. 5348, pp. 194–197, 1998. View at Publisher · View at Google Scholar · View at Scopus
  149. M. S. Thompson, W. Cui, and J. P. Reilly, “Fragmentation of singly charged peptide ions by photodissociation at λ = 157 nm,” Angewandte Chemie, vol. 43, no. 36, pp. 4791–4794, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. Z. Guan, N. L. Kelleher, P. B. O'Connor, D. J. Aaserud, D. P. Little, and F. W. McLafferty, “193 nm photodissociation of larger multiply-charged biomolecules,” International Journal of Mass Spectrometry and Ion Processes, vol. 157-158, pp. 357–364, 1996. View at Scopus
  151. R. A. Zubarev, N. L. Kelleher, and F. W. McLafferty, “Electron capture dissociation of multiply charged protein cations. A nonergodic process,” Journal of the American Chemical Society, vol. 120, no. 13, pp. 3265–3266, 1998. View at Publisher · View at Google Scholar · View at Scopus
  152. J. E. P. Syka, J. J. Coon, M. J. Schroeder, J. Shabanowitz, and D. F. Hunt, “Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9528–9533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. B. A. Budnik, K. F. Haselmann, and R. A. Zubarev, “Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon,” Chemical Physics Letters, vol. 342, no. 3-4, pp. 299–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. R. B. Cody, “Electron impact excitation of ions from organics: an alternative to collision induced dissociation,” Analytical Chemistry, vol. 51, no. 4, pp. 547–551, 1979. View at Scopus
  155. R. W. Vachet and G. L. Glish, “Effects of heavy gases on the tandem mass spectra of peptide ions in the quadrupole ion trap,” Journal of the American Society for Mass Spectrometry, vol. 7, no. 12, pp. 1194–1202, 1996. View at Publisher · View at Google Scholar · View at Scopus
  156. R. Boyd and A. Somogyi, “The mobile proton hypothesis in fragmentation of protonated peptides: a perspective,” Journal of the American Society for Mass Spectrometry, vol. 21, pp. 1275–1278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. X. J. Tang, P. Thibault, and R. K. Boyd, “Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation,” Analytical Chemistry, vol. 65, no. 20, pp. 2824–2834, 1993. View at Scopus
  158. R. S. Bordoli and R. H. Bateman, “The effect of collision energy, target gas and target gas purity on the high energy collision induced product ion spectrum of renin substrate,” International Journal of Mass Spectrometry and Ion Processes, vol. 122, pp. 243–254, 1992. View at Scopus
  159. W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, “Electrospray and tandem mass spectrometry in biochemistry,” Biochemical Journal, vol. 355, no. 3, pp. 545–561, 2001. View at Scopus
  160. M. Kinter and N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, Wiley-Interscience, New York, NY, USA, 2000.
  161. V. H. Wysocki, G. Cheng, Q. Zhang, K. A. Herrmann, R. L. Beardsley, and A. E. Hilderbrand, in Principles of Mass Spectrometry Applied to Biomolecules, pp. 277–300, John Wiley & Sons, 2006.
  162. M. L. Gross, “Charge-remote fragmentations: method, mechanism and applications,” International Journal of Mass Spectrometry and Ion Processes, vol. 118-119, pp. 137–165, 1992. View at Scopus
  163. K. Biemann and A. M. James, in Methods in Enzymology, vol. 193, pp. 455–479, Academic Press, 1990.
  164. B. Paizs and S. Suhai, “Towards understanding the tandem mass spectra of protonated oligopeptides. 1: mechanism of amide bond cleavage,” Journal of the American Society for Mass Spectrometry, vol. 15, no. 1, pp. 103–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. H. H. Hill, C. H. Hill, G. R. Asbury, C. Wu, L. M. Matz, and T. Ichiye, “Charge location on gas phase peptides,” International Journal of Mass Spectrometry, vol. 219, no. 1, pp. 23–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  166. C. Afonso, F. Modeste, P. Breton, F. Fournier, and J. C. Tabet, “Proton affinities of the commonly occuring L-amino acids by using electrospray ionization-ion trap mass spectrometry,” European Journal of Mass Spectrometry, vol. 6, no. 5, pp. 443–449, 2000. View at Scopus
  167. C. Bleiholder, S. Suhai, and B. Paizs, “Revising the proton affinity scale of the naturally occurring α-amino acids,” Journal of the American Society for Mass Spectrometry, vol. 17, no. 9, pp. 1275–1281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. V. H. Wysocki, G. Tsaprailis, L. L. Smith, and L. A. Breci, “Mobile and localized protons: a framework for understanding peptide dissociation,” Journal of Mass Spectrometry, vol. 35, no. 12, pp. 1399–1406, 2000. View at Publisher · View at Google Scholar · View at Scopus
  169. A. R. Dongre, J. L. Jones, A. Somogyi, and V. H. Wysocki, “Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model,” Journal of the American Chemical Society, vol. 118, no. 35, pp. 8365–8374, 1996. View at Publisher · View at Google Scholar · View at Scopus
  170. A. G. Harrison and T. Yalcin, “Proton mobility in protonated amino acids and peptides,” International Journal of Mass Spectrometry and Ion Processes, vol. 165-166, pp. 339–347, 1997. View at Scopus
  171. I. P. Csonka, B. Paizs, G. Lendvay, and S. Suhai, “Proton mobility in protonated peptides: a joint molecular orbital and RRKM study,” Rapid Communications in Mass Spectrometry, vol. 14, no. 6, pp. 417–431, 2000. View at Publisher · View at Google Scholar · View at Scopus
  172. B. Paizs and S. Suhai, “Theoretical study of the main fragmentation pathways for protonated glycylglycine,” Rapid Communications in Mass Spectrometry, vol. 15, no. 8, pp. 651–663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  173. B. Palzs and S. Suhal, “Fragmentation pathways of protonated peptides,” Mass Spectrometry Reviews, vol. 24, no. 4, pp. 508–548, 2005. View at Publisher · View at Google Scholar
  174. P. Roepstorff and J. Fohlman, “Proposal for a common nomenclature for sequence ions in mass spectra of peptides,” Biomedical Mass Spectrometry, vol. 11, no. 11, p. 601, 1984.
  175. K. Biemann, “Contributions of mass spectrometry to peptide and protein structure,” Biomedical and Environmental Mass Spectrometry, vol. 16, no. 1–12, pp. 99–111, 1988. View at Scopus
  176. K. D. Ballard and S. J. Gaskell, “Sequential mass spectrometry applied to the study of the formation of “internal” fragment ions of protonated peptides,” International Journal of Mass Spectrometry and Ion Processes, vol. 111, no. C, pp. 173–189, 1991. View at Scopus
  177. K. Ambihapathy, T. Yalcin, H. W. Leung, and A. G. Harrison, “Pathways to immonium ions in the fragmentation of protonated peptides,” Journal of Mass Spectrometry, vol. 32, no. 2, pp. 209–215, 1997. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Sun, C. Yu, Y. Qiao et al., “Deriving the probabilities of water loss and ammonia loss for amino acids from tandem mass spectra,” Journal of Proteome Research, vol. 7, no. 1, pp. 202–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. J. E. McClellan, S. T. Quarmby, and R. A. Yost, “Parent and neutral loss monitoring on a quadrupole ion trap mass spectrometer: screening of acylcarnitines in complex mixtures,” Analytical Chemistry, vol. 74, no. 22, pp. 5799–5806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  180. A. G. Harrison, A. B. Young, C. Bleiholder, S. Suhai, and B. Paizs, “Scrambling of sequence information in collision-induced dissociation of peptides,” Journal of the American Chemical Society, vol. 128, no. 32, pp. 10364–10365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  181. A. G. Harrison and A. B. Young, “Fragmentation of protonated oligoalanines: amide bond cleavage and beyond,” Journal of the American Society for Mass Spectrometry, vol. 15, no. 12, pp. 1810–1819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  182. T. Yalcin, C. Khouw, I. G. Csizmadia, M. R. Peterson, and A. G. Harrison, “Why are B ions stable species in peptide spectra?” Journal of the American Society for Mass Spectrometry, vol. 6, no. 12, pp. 1165–1174, 1995. View at Scopus
  183. H. Nair, A. Somogyi, and V. H. Wysocki, “Effect of alkyl substitution at the amide nitrogen on amide bond cleavage: electrospray ionization/surface-induced dissociation fragmentation of substance P and two alkylated analogs,” Journal of Mass Spectrometry, vol. 31, no. 10, pp. 1141–1148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  184. R. W. Vachet, B. M. Bishop, B. W. Erickson, and G. L. Glish, “Novel peptide dissociation: gas-phase intramolecular rearrangement of internal amino acid residues,” Journal of the American Chemical Society, vol. 119, no. 24, pp. 5481–5488, 1997. View at Publisher · View at Google Scholar · View at Scopus
  185. J. V. Olsen and M. Mann, “Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 37, pp. 13417–13422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  186. Tang Xue Jun and R. K. Boyd, “Rearrangements of doubly charged acylium ions from lysyl and ornithyl peptides,” Rapid Communications in Mass Spectrometry, vol. 8, no. 9, pp. 678–686, 1994. View at Scopus
  187. J. Yaqüe, A. Paradela, M. Ramos et al., “Peptide rearrangement during quadrupole ion trap fragmentation: added complexity to MS/MS spectra,” Analytical Chemistry, vol. 75, no. 6, pp. 1524–1535, 2003. View at Publisher · View at Google Scholar
  188. C. Bleiholder, S. Osburn, T. D. Williams et al., “Sequence-scrambling fragmentation pathways of protonated peptides,” Journal of the American Chemical Society, vol. 130, no. 52, pp. 17774–17789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  189. C. Jia, W. Qi, and Z. He, “Cyclization reaction of peptide fragment Ions during multistage collisionally activated decomposition: an inducement to lose internal amino-acid residues,” Journal of the American Society for Mass Spectrometry, vol. 18, no. 4, pp. 663–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. A. G. Harrison, “Peptide sequence scrambling through cyclization of b5 Ions,” Journal of the American Society for Mass Spectrometry, vol. 19, no. 12, pp. 1776–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. S. Molesworth, S. Osburn, and M. Van Stipdonk, “Influence of amino acid side chains on apparent selective opening of cyclic b5 ions,” Journal of the American Society for Mass Spectrometry, vol. 21, no. 6, pp. 1028–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  192. L. Mouls, J. L. Aubagnac, J. Martinez, and C. Enjalbal, “Low energy peptide fragmentations in an ESI-Q-Tof type mass spectrometer,” Journal of Proteome Research, vol. 6, no. 4, pp. 1378–1391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  193. L. Yu, Y. Tan, Y. Tsai, D. R. Goodlett, and N. C. Polfer, “On the relevance of peptide sequence permutations in shotgun proteomics studies,” Journal of Proteome Research, vol. 10, no. 5, pp. 2409–2416, 2011. View at Publisher · View at Google Scholar
  194. A. A. Goloborodko, M. V. Gorshkov, D. M. Good, and R. A. Zubarev, “Sequence scrambling in shotgun proteomics is negligible,” Journal of the American Society for Mass Spectrometry, vol. 22, no. 7, pp. 1121–1124, 2011. View at Publisher · View at Google Scholar
  195. D. Pu and C. J. Cassady, “Negative ion dissociation of peptides containing hydroxyl side chains,” Rapid Communications in Mass Spectrometry, vol. 22, no. 2, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. J. H. Bowie, C. S. Brinkworth, and S. Dua, “Collision-induced fragmentations of the (M-H)-parent anions of underivatized peptides: an aid to structure determination and some unusual negative ion cleavages,” Mass Spectrometry Reviews, vol. 21, no. 2, pp. 87–107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  197. A. G. Harrison and A. B. Young, “Fragmentation of deprotonated N-benzoylpeptides: formation of deprotonated oxazolones,” Journal of the American Society for Mass Spectrometry, vol. 15, no. 4, pp. 446–456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  198. N. L. Clipston, J. Jai-nhuknan, and C. J. Cassady, “A comparison of negative and positive ion time-of-flight post-source decay mass spectrometry for peptides containing basic residues,” International Journal of Mass Spectrometry, vol. 222, no. 1–3, pp. 363–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  199. A. L. McCormack, A. Somogyi, A. R. Dongre, and V. H. Wysocki, “Fragmentation of protonated peptides: surface-induced dissociation in conjunction with a quantum mechanical approach,” Analytical Chemistry, vol. 65, no. 20, pp. 2859–2872, 1993. View at Scopus
  200. G. E. Reid, R. J. Simpson, and R. A. J. O'Hair, “Leaving group and gas phase neighboring group effects in the side chain losses from protonated serine and its derivatives,” Journal of the American Society for Mass Spectrometry, vol. 11, no. 12, pp. 1047–1060, 2000. View at Publisher · View at Google Scholar · View at Scopus
  201. R. J. Ferrier, Carbohydrate Chemistry, vol. 33, Royal Society of Chemistry, Cambridge, UK, 2002.
  202. B. Domon and C. E. Costello, “A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates,” Glycoconjugate Journal, vol. 5, no. 4, pp. 397–409, 1988. View at Scopus
  203. J. Lemoine, B. Fournet, D. Despeyroux, K. R. Jennings, R. Rosenberg, and E. de Hoffmann, “Collision-induced dissociation of alkali metal cationized and permethylated oligosaccharides: influence of the collision energy and of the collision gas for the assignment of linkage position,” Journal of the American Society for Mass Spectrometry, vol. 4, no. 3, pp. 197–203, 1993. View at Scopus
  204. D. J. Harvey, “Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray,” Journal of Mass Spectrometry, vol. 35, no. 10, pp. 1178–1190, 2000. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Pfenninger, M. Karas, B. Finke, and B. Stahl, “Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 1: methodology),” Journal of the American Society for Mass Spectrometry, vol. 13, no. 11, pp. 1331–1340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  206. W. Chai, V. Piskarev, and A. M. Lawson, “Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides,” Analytical Chemistry, vol. 73, no. 3, pp. 651–657, 2001. View at Publisher · View at Google Scholar · View at Scopus
  207. D. Garozzo, M. Giuffrida, G. Impallomeni, A. Ballistreri, and G. Mon taudo, “Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry,” Analytical Chemistry, vol. 62, no. 3, pp. 279–286, 1990. View at Scopus
  208. S. A. McLuckey, G. J. Van Berker, and G. L. Glish, “Tandem mass spectrometry of small, multiply charged oligonucleotides,” Journal of the American Society for Mass Spectrometry, vol. 3, no. 1, pp. 60–70, 1992. View at Scopus
  209. E. Nordhoff, M. Karas, R. Cramer et al., “Direct mass spectrometric sequencing of low-picomole amounts of oligodeoxynucleotides with up to 21 bases by matrix-assisted laser desorption/ionization mass spectrometry,” Journal of Mass Spectrometry, vol. 30, no. 1, pp. 99–112, 1995. View at Publisher · View at Google Scholar · View at Scopus
  210. J. P. Barry, P. Vouros, A. Van Schepdael, and S. J. Law, “Mass and sequence verification of modified oligonucleotides using electrospray tandem mass spectrometry,” Journal of Mass Spectrometry, vol. 30, no. 7, pp. 993–1006, 1995. View at Publisher · View at Google Scholar · View at Scopus
  211. M. G. Bartlett, J. A. McCloskey, S. Manalili, and R. H. Griffey, “The effect of backbone charge on the collision-induced dissociation of oligonucleotides,” Journal of Mass Spectrometry, vol. 31, no. 11, pp. 1277–1283, 1996. View at Publisher · View at Google Scholar · View at Scopus
  212. S. A. McLuckey and S. Habibi-Goudarzi, “Decompositions of multiply charged oligonucleotide anions,” Journal of the American Chemical Society, vol. 115, no. 25, pp. 12085–12095, 1993. View at Scopus
  213. R. L. Hettich and E. A. Stemmler, “Investigation of oligonucleotide fragmentation with matrix-assisted laser desorption/ionization fourier-transform mass spectrometry and sustained off-resonance irradiation,” Rapid Communications in Mass Spectrometry, vol. 10, no. 3, pp. 321–327, 1996. View at Scopus
  214. W. J. Griffiths, Y. Yang, J. Å. Lindgren, and J. Sjövall, “Charge remote fragmentation of fatty acid anions in 400 eV collisions with xenon atoms,” Rapid Communications in Mass Spectrometry, vol. 10, no. 1, pp. 21–28, 1996. View at Scopus
  215. E. Fahy, S. Subramaniam, H. A. Brown et al., “A comprehensive classification system for lipids,” Journal of Lipid Research, vol. 46, no. 5, pp. 839–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  216. K. B. Tomer, F. W. Crow, and M. L. Gross, “Location of double bond position in unsaturated fatty acids by negative ion MS/MS,” Journal of the American Chemical Society, vol. 105, no. 16, pp. 5487–5488, 1983. View at Scopus
  217. W. J. Griffiths, “Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids,” Mass Spectrometry Reviews, vol. 22, no. 2, pp. 81–152, 2003. View at Scopus
  218. V. H. Wysocki and M. M. Ross, “Charge-remote fragmentation of gas-phase ions: mechanistic and energetic considerations in the dissociation of long-chain functionalized alkanes and alkenes,” International Journal of Mass Spectrometry and Ion Processes, vol. 104, no. 3, pp. 179–211, 1991. View at Scopus
  219. W. J. Griffiths, A. Brown, R. Reimendal, Y. Yang, J. Zhang, and J. Sjövall, “A comparison of fast-atom bombardment and electrospray as methods of ionization in the study of sulphated- and sulphonated-lipids by tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 10, no. 10, pp. 1169–1174, 1996. View at Scopus
  220. P. Roepstorff, “Mass spectrometry in protein studies from genome to function,” Current Opinion in Biotechnology, vol. 8, no. 1, pp. 6–13, 1997. View at Publisher · View at Google Scholar · View at Scopus
  221. J. R. Yates, “Mass spectrometry and the age of the proteome,” Journal of Mass Spectrometry, vol. 33, no. 1, pp. 1–19, 1998. View at Publisher · View at Google Scholar · View at Scopus
  222. D. J. C. Pappin, P. Hojrup, and A. J. Bleasby, “Rapid identification of proteins by peptide-mass fingerprinting,” Current Biology, vol. 3, no. 6, pp. 327–332, 1993. View at Scopus
  223. B. M. Mayr, O. Kohlbacher, K. Reinert et al., “Absolute myoglobin quantitation in serum by combining two-dimensional liquid chromatography-electrospray ionization mass spectrometry and novel data analysis algorithms,” Journal of Proteome Research, vol. 5, no. 2, pp. 414–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  224. Y. Oda, K. Huang, F. R. Cross, D. Cowburn, and B. T. Chait, “Accurate quantitation of protein expression and site-specific phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6591–6596, 1999. View at Publisher · View at Google Scholar · View at Scopus
  225. J. A. Loo, “Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes,” International Journal of Mass Spectrometry, vol. 200, no. 1–3, pp. 175–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  226. E. T. J. Van den Bremer, W. Jiskoot, R. James et al., “Probing metal ion binding and conformational properties of the colicin E9 endonuclease by electrospray ionization time-of-flight mass spectrometry,” Protein Science, vol. 11, no. 7, pp. 1738–1752, 2002. View at Publisher · View at Google Scholar · View at Scopus
  227. S. K. Chowdhury, V. Katta, and B. T. Chait, “Probing conformational changes in proteins by mass spectrometry,” Journal of the American Chemical Society, vol. 112, no. 24, pp. 9012–9013, 1990. View at Publisher · View at Google Scholar · View at Scopus
  228. J. S. Andersen, B. Svensson, and P. Roepstorff, “Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry,” Nature Biotechnology, vol. 14, no. 4, pp. 449–457, 1996. View at Scopus
  229. H. D. Niall and S. N. T. C. H. W. Hirs, in Methods in Enzymology, vol. 27, pp. 942–1010, Academic Press, 1973.
  230. J. A. Loo, C. G. Edmonds, and R. D. Smith, “Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry,” Science, vol. 248, no. 4952, pp. 201–204, 1990. View at Scopus
  231. K. Biemann, “Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation,” Methods in Enzymology, vol. 193, pp. 455–479, 1990.
  232. J. A. Taylor and R. S. Johnson, “Sequence database searches via de Novo peptide sequencing by tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 11, no. 9, pp. 1067–1075, 1997. View at Publisher · View at Google Scholar · View at Scopus
  233. A. Armirotti, “Bottom-up proteomics,” Current Analytical Chemistry, vol. 5, no. 2, pp. 116–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  234. H. Zhong, Y. Zhang, Z. Wen, and L. Li, “Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis,” Nature Biotechnology, vol. 22, no. 10, pp. 1291–1296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  235. G. E. Reid and S. A. McLuckey, ““Top down” protein characterization via tandem mass spectrometry,” Journal of Mass Spectrometry, vol. 37, no. 7, pp. 663–675, 2002. View at Publisher · View at Google Scholar · View at Scopus
  236. M. Mann and O. N. Jensen, “Proteomic analysis of post-translational modifications,” Nature Biotechnology, vol. 21, no. 3, pp. 255–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  237. M. A. Freitas, A. R. Sklenar, and M. R. Parthun, “Application of mass spectrometry to the identification and quantification of histone post-translational modifications,” Journal of Cellular Biochemistry, vol. 92, no. 4, pp. 691–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  238. H. Oberacher, C. G. Huber, and P. J. Oefner, “Mutation scanning by ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry (ICEMS),” Human Mutation, vol. 21, no. 1, pp. 86–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  239. L. Zhang, E. E. Eugeni, M. R. Parthun, and M. A. Freitas, “Identification of novel histone post-translational modifications by peptide mass fingerprinting,” Chromosoma, vol. 112, no. 2, pp. 77–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  240. H. Prakash and S. Mazumdar, “Succinylation of cytochrome c investigated by electrospray ionization mass spectrometry: reactive lysine residues,” International Journal of Mass Spectrometry, vol. 281, no. 1-2, pp. 55–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  241. S. Goyal, M. S. Deshpande, and S. Mazumdar, “Structural design of the active site for covalent attachment of the heme to the protein matrix: atudies on a thermostable cytochrome P450,” Biochemistry, vol. 50, no. 6, pp. 1042–1052, 2011. View at Publisher · View at Google Scholar
  242. T. Y. Yen, H. Yan, and B. A. Macher, “Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry,” Journal of Mass Spectrometry, vol. 37, no. 1, pp. 15–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  243. D. L. Smith, Z. Zhou, and A. M. James, in Methods in Enzymology, vol. 193, pp. 1296–1291, Academic Press, 1990.
  244. M. Scigelova, P. S. Green, A. E. Giannakopulos, et al., “A practical protocol for the reduction of disulfide bonds in proteins prior to analysis by mass spectrometry,” European Journal of Mass Spectrometry, vol. 7, pp. 29–34, 2001.
  245. S. Y. Gauthier, C. M. Kay, B. D. Sykes, V. K. Walker, and P. L. Davies, “Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein,” European Journal of Biochemistry, vol. 258, no. 2, pp. 445–453, 1998. View at Publisher · View at Google Scholar · View at Scopus
  246. M. Zhang and I. A. Kaltashov, “Mapping of protein disulfide bonds using negative ion fragmentation with a broadband precursor selection,” Analytical Chemistry, vol. 78, no. 14, pp. 4820–4829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  247. J. Wu, “Disulfide bond mapping by cyanylation-induced cleavage and mass spectrometry,” Methods in Molecular Biology, vol. 446, pp. 1–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  248. R. D. Smith and K. J. Light-Wahl, “The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry: promise, pitfalls and prognosis,” Biological Mass Spectrometry, vol. 22, no. 9, pp. 493–501, 1993. View at Scopus
  249. T. D. Veenstra, “Electrospray ionization mass spectrometry in the study of biomolecular non-covalent interactions,” Biophysical Chemistry, vol. 79, no. 2, pp. 63–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  250. B. N. Pramanik, P. L. Bartner, U. A. Mirza, Y. H. Liu, and A. K. Ganguly, “Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology,” Journal of Mass Spectrometry, vol. 33, no. 10, pp. 911–920, 1998. View at Publisher · View at Google Scholar · View at Scopus
  251. S. Y. Sheu, D. Y. Yang, H. L. Selzle, and E. W. Schlag, “Energetics of hydrogen bonds in peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12683–12687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  252. M. F. Jarrold, “Peptides and proteins in the vapor phase,” Annual Review of Physical Chemistry, vol. 51, pp. 179–207, 2000. View at Scopus
  253. S. Banerjee and S. Mazumdarc, “Non-covalent dimers of the lysine containing protonated peptide ions in gaseous state: electrospray ionizationmass spectrometric study,” Journal of Mass Spectrometry, vol. 45, no. 10, pp. 1212–1219, 2010. View at Publisher · View at Google Scholar
  254. E. N. Kitova, M. Seo, P. N. Roy, and J. S. Klassen, “Elucidating the intermolecular interactions within a desolvated protein-ligand complex. An experimental and computational study,” Journal of the American Chemical Society, vol. 130, no. 4, pp. 1214–1226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. B. Qiu, J. Liu, Z. Qin, G. Wang, and H. Luo, “Quintets of uracil and thymine: a novel structure of nucleobase self-assembly studied by electrospray ionization mass spectrometry,” Chemical Communications, no. 20, pp. 2863–2865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  256. J. A. Loo, “Studying noncovalent protein complexes by electrospray ionization mass spectrometry,” Mass Spectrometry Reviews, vol. 16, no. 1, pp. 1–23, 1997. View at Scopus
  257. D. Lafitte, A. J. R. Heck, T. J. Hill, K. Jumel, S. E. Harding, and P. J. Derrick, “Evidence of noncovalent dimerization of calmodulin,” European Journal of Biochemistry, vol. 261, no. 1, pp. 337–344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  258. J. A. Loo, “Probing protein-metal ion interactions by electrospray ionization mass spectrometry: enolase and nucleocapsid protein,” International Journal of Mass Spectrometry, vol. 204, no. 1–3, pp. 113–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  259. K. Benkestock, P. O. Edlund, and J. Roeraade, “Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction,” Rapid Communications in Mass Spectrometry, vol. 19, no. 12, pp. 1637–1643, 2005. View at Publisher · View at Google Scholar · View at Scopus
  260. H. Steen and N. Jensen, “Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry,” Mass Spectrometry Reviews, vol. 21, no. 3, pp. 163–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  261. A. Tjernberg, S. Carnö, F. Oliv et al., “Determination of dissociation constants for protein-ligand complexes by electrospray ionization mass spectrometry,” Analytical Chemistry, vol. 76, no. 15, pp. 4325–4331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  262. L. Liu, D. Bagal, E. N. Kitova, P. D. Schnier, and J. S. Klassen, “Hydrophobic protein-ligand interactions preserved in the gas phase,” Journal of the American Chemical Society, vol. 131, no. 44, pp. 15980–15981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  263. N. P. Barrera, N. Di Bartolo, P. J. Booth, and C. V. Robinson, “Micelles protect membrane complexes from solution to vacuum,” Science, vol. 321, no. 5886, pp. 243–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  264. M. C. Crowe and J. S. Brodbelt, “Evaluation of noncovalent interactions between peptides and polyether compounds via energy-variable collisionally activated dissociation,” Journal of the American Society for Mass Spectrometry, vol. 14, no. 10, pp. 1148–1157, 2003. View at Publisher · View at Google Scholar · View at Scopus
  265. W. M. David and J. S. Brodbelt, “Threshold dissociation energies of protonated amine/polyether complexes in a quadrupole ion trap,” Journal of the American Society for Mass Spectrometry, vol. 14, no. 4, pp. 383–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  266. C. S. Ho, C. W. K. Lam, M. H. M. Chan, et al., “Electrospray ionisation mass spectrometry: principles and clinical applications,” Clinical Biochemistry Review, vol. 24, pp. 3–12, 2003.
  267. M. S. Rashed, M. P. Bucknall, D. Little et al., “Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles,” Clinical Chemistry, vol. 43, no. 7, pp. 1129–1141, 1997. View at Scopus
  268. D. H. Chace, J. E. Sherwin, S. L. Hillman, F. Lorey, and G. C. Cunningham, “Use of phenylalanine-to-tyrosine ratio determined by tandem mass spectrometry to improve newborn screening for phenylketonuria of early discharge specimens collected in the first 24 hours,” Clinical Chemistry, vol. 44, no. 12, pp. 2405–2409, 1998. View at Scopus
  269. D. H. Chace, J. C. DiPerna, B. L. Mitchell, B. Sgroi, L. F. Hofman, and E. W. Naylor, “Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death,” Clinical Chemistry, vol. 47, no. 7, pp. 1166–1182, 2001. View at Scopus
  270. T. Ito, A. B. P. Van Kuilenburg, A. H. Bootsma et al., “Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tandem mass spectrometry of liquid urine or urine-soaked filter paper strips,” Clinical Chemistry, vol. 46, no. 4, pp. 445–452, 2000. View at Scopus
  271. U. G. Jensen, N. J. Brandt, E. Christensen, F. Skovby, B. Nørgaard-Pedersen, and H. Simonsen, “Neonatal screening for galactosemia by quantitative analysis of hexose monophosphates using tandem mass spectrometry: a retrospective study,” Clinical Chemistry, vol. 47, no. 8, pp. 1364–1372, 2001. View at Scopus
  272. D. W. Johnson, “A rapid screening procedure for the diagnosis of peroxisomal disorders: quantification of very long-chain fatty acids, as dimethylaminoethyl esters, in plasma and blood spots, by electrospray tandem mass spectrometry,” Journal of Inherited Metabolic Disease, vol. 23, no. 5, pp. 475–486, 2000. View at Publisher · View at Google Scholar · View at Scopus
  273. A. H. Bootsma, H. Overmars, A. Van Rooij et al., “Rapid analysis of conjugated bile acids in plasma using electrospray tandem mass spectrometry: application for selective screening of peroxisomal disorders,” Journal of Inherited Metabolic Disease, vol. 22, no. 3, pp. 307–310, 1999. View at Publisher · View at Google Scholar · View at Scopus
  274. B. J. Wild, B. N. Green, E. K. Cooper et al., “Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry,” Blood Cells, Molecules, and Diseases, vol. 27, no. 3, pp. 691–704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  275. W. Hoelzel and K. Miedema, “Development of a reference system for the international standardization of HbA1c/glycohemoglobin determinations,” Journal of the International Federation of Clinical Chemistry, vol. 9, no. 2, pp. 62–67, 1996. View at Scopus
  276. U. Krishnamurti and M. W. Steffes, “Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus,” Clinical Chemistry, vol. 47, no. 7, pp. 1157–1165, 2001. View at Scopus
  277. S. K. Manna, A. D. Patterson, Q. Yang et al., “UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model,” Journal of Proteome Research, vol. 10, no. 9, pp. 4120–4133, 2011. View at Publisher · View at Google Scholar
  278. S. K. Manna, A. D. Patterson, Q. Yang et al., “Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and the ppara-null mouse,” Journal of Proteome Research, vol. 9, no. 8, pp. 4176–4188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  279. C. Lifshitz and J. Laskin, Principles of Mass Spectrometry Applied to Biomolecules, John Wiley & Sons, 2006.
  280. E. Kalenius, D. Moiani, E. Dalcanale, and P. Vainiotalo, “Measuring H-bonding in supramolecular complexes by gas phase ion-molecule reactions,” Chemical Communications, no. 37, pp. 3865–3867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  281. D. P. Weimann, H. D. F. Winkler, J. A. Falenski, B. Koksch, and C. A. Schalley, “Highly dynamic motion of crown ethers along oligolysine peptide chains,” Nature Chemistry, vol. 1, no. 7, pp. 573–577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  282. T. E. Wales and J. R. Engen, “Hydrogen exchange mass spectrometry for the analysis of protein dynamics,” Mass Spectrometry Reviews, vol. 25, no. 1, pp. 158–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  283. Y. Hamuro, S. J. Coales, M. R. Southern, J. F. Nemeth-Cawley, D. D. Stranz, and P. R. Griffin, “Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry,” Journal of Biomolecular Techniques, vol. 14, no. 3, pp. 171–182, 2003. View at Scopus
  284. B. E. Winger, K. J. Light-Wahl, A. L. Rockwood, and R. D. Smith, “Probing qualitative conformation differences of multiply protonated gas-phase proteins via hydrogen/deuterium isotopic exchange with water-d2,” Journal of the American Chemical Society, vol. 114, no. 14, pp. 5897–5898, 1992.
  285. F. Wang, M. A. Freitas, A. G. Marshall, and B. D. Sykes, “Gas-phase memory of solution-phase protein conformation: H/D exchange and Fourier transform ion cyclotron resonance mass spectrometry of the N-terminal domain of cardiac troponin C,” International Journal of Mass Spectrometry, vol. 192, no. 1–3, pp. 319–325, 1999. View at Scopus
  286. H. Han and S. A. McLuckey, “Selective covalent bond formation in polypeptide ions via gas-phase ion/ion reaction chemistry,” Journal of the American Chemical Society, vol. 131, no. 36, pp. 12884–12885, 2009. View at Publisher · View at Google Scholar · View at Scopus
  287. R. Qian, J. Zhou, S. Yao, H. Wang, and Y. Guo, in Reactive Intermediates, pp. 113–131, Wiley-VCH, 2010.
  288. V. M. Williams, J. R. Kong, B. J. Ko et al., “ESI-MS, DFT, and synthetic studies on the H2-mediated coupling of acetylene: insertion of C=X bonds into rhodacyclopentadienes and Brønsted acid cocatalyzed hydrogenolysis of organorhodium intermediates,” Journal of the American Chemical Society, vol. 131, no. 44, pp. 16054–16062, 2009. View at Publisher · View at Google Scholar · View at Scopus
  289. A. O. Aliprantis and J. W. Canary, “Observation of catalytic intermediates in the Suzuki reaction by electrospray mass spectrometry,” Journal of the American Chemical Society, vol. 116, no. 15, pp. 6985–6986, 1994. View at Scopus
  290. L. S. Santos, C. H. Pavam, W. P. Almeida, F. Coelho, and M. N. Eberlin, “Probing the mechanism of the Baylis-Hillman reaction by electrospray ionization mass and tandem mass spectrometry,” Angewandte Chemie, vol. 43, no. 33, pp. 4330–4333, 2004. View at Publisher · View at Google Scholar
  291. A. A. Sabino, A. H. L. Machado, C. R. D. Correia, and M. N. Eberlin, “Probing the mechanism of the Heck reaction with arene diazonium salts by electrospray mass and tandem mass spectrometry,” Angewandte Chemie, vol. 43, no. 19, pp. 2514–2518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  292. H. Guo, R. Qian, Y. Liao, S. Ma, and Y. Guo, “ESI-MS studies on the mechanism of Pd(0)-catalyzed three-component tandem double addition-cyclization reaction,” Journal of the American Chemical Society, vol. 127, no. 37, pp. 13060–13064, 2005. View at Publisher · View at Google Scholar · View at Scopus
  293. S. R. Wilson and Y. Wu, “A study of nickel-catalyzed coupling reactions by electrospray ionization mass spectrometry,” Organometallics, vol. 12, no. 4, pp. 1478–1480, 1993. View at Scopus
  294. Y. Xie, L. F. He, S. C. Lin et al., “Desorption electrospray ionization mass spectrometry for monitoring the kinetics of baeyer-villiger solid-state organic reactions,” Journal of the American Society for Mass Spectrometry, vol. 20, no. 11, pp. 2087–2092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  295. D. G. Harman and S. J. Blanksby, “Trapping of a tert-adamantyl peroxyl radical in the gas phase,” Chemical Communications, no. 8, pp. 859–861, 2006. View at Publisher · View at Google Scholar · View at Scopus
  296. M. N. Eberlin, “Electrospray ionization mass spectrometry: a major tool to investigate reaction mechanisms in both solution and the gas phase,” European Journal of Mass Spectrometry, vol. 13, no. 1, pp. 19–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  297. V. Kertesz and G. J. V. Berkel, “Chemical imaging with desorption electrospray ionization mass spectrometry,” Methods in Molecular Biology, vol. 656, pp. 231–241, 2010.
  298. J. M. Wiseman, D. R. Ifa, Y. Zhu et al., “Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18120–18125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  299. D. R. Ifa, J. M. Wiseman, Q. Song, and R. G. Cooks, “Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI),” International Journal of Mass Spectrometry, vol. 259, no. 1–3, pp. 8–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  300. J. M. Wiseman and B. C. Laughlin, “Desorption electrospray ionization (DESI) mass spectrometry: a brief introduction and overview,” Current Separations and Drug Development, vol. 22, pp. 11–14, 2007.