About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2012 (2012), Article ID 341260, 8 pages
http://dx.doi.org/10.1155/2012/341260
Research Article

Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

1Department of Chemistry, Northern Kentucky University, Highland Heights, KY 41099, USA
2Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA

Received 29 September 2011; Accepted 3 November 2011

Academic Editor: Charles L. Wilkins

Copyright © 2012 Chevelle A. Cason et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Dykes, “Dendrimers: a review of their appeal and applications,” Journal of Chemical Technology and Biotechnology, vol. 76, no. 9, pp. 903–918, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Tomalia, “Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry,” Progress in Polymer Science, vol. 30, no. 3-4, pp. 294–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Tomalia, “The emergence of a new macromolecular architecture: the dendritic state,” in Physical Properties of Polymers Handbook, J. E. Mark, Ed., pp. 671–692, Springer, New York, NY, USA, 2007.
  4. D. A. Tomalia, S. A. Henderson, and M. S. Diallo, “Dendrimers—an enabling synthetic science to controlled organic nanostructures,” in Handbook of Nanoscience, Engineering and Technology, W. A. I. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Irafrate, Eds., pp. 24.1–24.47, CRC Press, Taylor and Francis, Boca Raton, Fla, USA, 2007.
  5. D. Astruc, E. Boisselier, and C. Ornelas, “Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine,” Chemical Reviews, vol. 110, no. 4, pp. 1857–1959, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Gajbhiye, V. K. Palanirajan, R. K. Tekade, and N. K. Jain, “Dendrimers as therapeutic agents: a systematic review,” Journal of Pharmacy and Pharmacology, vol. 61, no. 8, pp. 989–1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Wijagkanalan, S. Kawakami, and M. Hashida, “Designing dendrimers for drug delivery and imaging: pharmacokinetic considerations,” Pharmaceutical Research, vol. 28, no. 7, pp. 1500–1519, 2011. View at Publisher · View at Google Scholar
  8. K. C. Petkar, S. S. Chavhan, S. Agatonovik-Kustrin, and K. K. Sawant, “Nanostructured materials in drug and gene delivery: a review of the state of the art,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 28, no. 2, pp. 101–164, 2011.
  9. M. A. Mintzer and M. W. Grinstaff, “Biomedical applications of dendrimers: a tutorial,” Chemical Society Reviews, vol. 40, no. 1, pp. 173–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Cheng, L. Zhao, Y. Li, and T. Xu, “Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives,” Chemical Society Reviews, vol. 40, no. 5, pp. 2673–2703, 2011. View at Publisher · View at Google Scholar
  11. E. Bustos, J. Manríquez, G. Orozco, and L. A. Godínez, “Preparation, characterization, and electrocatalytic activity of surface anchored, Prussian Blue containing starburst PAMAM dendrimers on gold electrodes,” Langmuir, vol. 21, no. 7, pp. 3013–3021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Zhu, Y. Gu, Z. Chang, P. He, and Y. Fang, “PAMAM dendrimers-based DNA biosensors for electrochemical detection of DNA hybridization,” Electroanalysis, vol. 18, no. 21, pp. 2107–2114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Diallo, S. Christie, P. Swaminathan, J. H. Johnson Jr., and W. A. Goddard III, “Dendrimer enhanced ultrafiltration—1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH 2 groups,” Environmental Science and Technology, vol. 39, no. 5, pp. 1366–1377, 2005. View at Publisher · View at Google Scholar
  14. L. J. Twyman, A. S. H. King, and I. K. Martin, “Catalysis inside dendrimers,” Chemical Society Reviews, vol. 31, no. 2, pp. 69–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. N. H. Reek, D. De Groot, G. E. Oosterom, P. C. J. Kamer, and P. W. N. M. Van Leeuwen, “Core and periphery functionalized dendrimers for transition metal catalysis; a covalent and a non-covalent approach,” Reviews in Molecular Biotechnology, vol. 90, no. 3-4, pp. 159–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Satija, V. V. R. Sai, and S. Mukherji, “Dendrimers in biosensors: concept and applications,” Journal of Materials Chemistry, vol. 21, pp. 14367–14386, 2011.
  17. J. Losada, M. Zamora, P. García Armada, I. Cuadrado, B. Alonso, and C. M. Casado, “Bienzyme sensors based on novel polymethylferrocenyl dendrimers,” Analytical and Bioanalytical Chemistry, vol. 385, no. 7, pp. 1209–1217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Cavaye, P. E. Shaw, A. R.G. Smith et al., “Solid state dendrimer sensors: effect of dendrimer dimensionality on detection and sequestration of 2,4-dinitrotoluene,” Journal of Physical Chemistry C, vol. 115, no. 37, pp. 18366–18371, 2011. View at Publisher · View at Google Scholar
  19. J. Giri, M. S. Diallo, W. A. Goddard, N. F. Dalleska, X. Fang, and Y. Tang, “Partitioning of poly(amidoamine) dendrimers between n-octanol and water,” Environmental Science and Technology, vol. 43, no. 13, pp. 5123–5129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. G. Mullen, E. L. Borgmeier, A. M. Desai et al., “Isolation and characterization of dendrimers with precise numbers of functional groups,” Chemistry, vol. 16, no. 35, pp. 10675–10678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Mutalik, A. K. Hewavitharana, P. N. Shaw, Y. G. Anissimov, M. S. Roberts, and H. S. Parekh, “Development and validation of a reversed-phase high-performance liquid chromatographic method for quantification of peptide dendrimers in human skin permeation experiments,” Journal of Chromatography B, vol. 877, no. 29, pp. 3556–3562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Lalwani, V. J. Venditto, A. Chouai, G. E. Rivera, S. Shaunak, and E. E. Simanek, “Electrophoretic behavior of anionic triazine and pamam dendrimers: methods for improving resolution and assessing purity using capillary electrophoresis,” Macromolecules, vol. 42, no. 8, pp. 3152–3161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. T. Islam, I. J. Majoros, and J. R. Baker Jr., “HPLC analysis of PAMAM dendrimer based multifunctional devices,” Journal of Chromatography B, vol. 822, no. 1-2, pp. 21–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. T. Islam, X. Shi, L. Balogh, and J. R. Baker, “HPLC separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups,” Analytical Chemistry, vol. 77, no. 7, pp. 2063–2070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Shi, I. Bányai, K. Rodriguez et al., “Electrophoretic mobility and molecular distribution studies of poly(amidoamine)dendrimers of defined charges,” Electrophoresis, vol. 27, no. 9, pp. 1758–1767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Shi, I. Bányai, M. T. Islam et al., “Generational, skeletal and substitutional diversities in generation one poly(amidoamine) dendrimers,” Polymer, vol. 46, no. 9, pp. 3022–3034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Shi, X. Bi, T. R. Ganser et al., “HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein,” Analyst, vol. 131, no. 7, pp. 842–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Sato, H. Kobayashi, T. Saga et al., “Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice,” Clinical Cancer Research, vol. 7, no. 11, pp. 3606–3612, 2001. View at Scopus
  29. D. S. Wilbur, P. M. Pathare, D. K. Hamlin, K. R. Buhler, and R. L. Vessella, “Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers,” Bioconjugate Chemistry, vol. 9, no. 6, pp. 813–825, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. H. C. Yoon, M. Y. Hong, and H. S. Kim, “Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode,” Analytical Biochemistry, vol. 282, no. 1, pp. 121–128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Spector and D. Mock, “Biotin transport through the blood-brain barrier,” Journal of Neurochemistry, vol. 48, no. 2, pp. 400–404, 1987. View at Scopus
  32. S. Beg, A. Samad, M. I. Alam, and I. Nazish, “Dendrimers as novel systems for delivery of neuropharmaceuticals to the brain,” CNS and Neurological Disorders, vol. 10, no. 5, pp. 576–588, 2011.
  33. N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chemical Reviews, vol. 105, no. 4, pp. 1547–1562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Basnar and I. Willner, “Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces,” Small, vol. 5, no. 1, pp. 28–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem, vol. 1, no. 1, pp. 18–52, 2000. View at Scopus
  36. C. A. Cason, S. A. Oehrle, T. A. Fabre, et al., “Improved methodology for monitoring poly(amidoamine) dendrimers surface transformations and product quality by ultra performance liquid chromatography,” Journal of Nanomaterials, vol. 2008, Article ID 456082, 7 pages, 2008. View at Publisher · View at Google Scholar
  37. J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analytical Chemistry, vol. 77, no. 19, pp. 6147–6154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. Driskell, J. M. Uhlenkamp, R. J. Lipert, and M. D. Porter, “Surface-enhanced Raman scattering immunoassays using a rotated capture substrate,” Analytical Chemistry, vol. 79, no. 11, pp. 4141–4148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. L. Millen, J. Nordling, H. A. Bullen, M. D. Porter, M. Tondra, and M. C. Granger, “Giant magenetoresistive sensors. 2. Detection of biorecognition events at self-referencing and magnetically tagged arrays,” Analytical Chemistry, vol. 80, no. 21, pp. 7940–7946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. E. Q. Yang, Y. U. Q. Xiong, Y. Guo, D. A. Da, and W. G. Lu, “Sizes correction on AFM images of nanometer spherical particles,” Journal of Materials Science, vol. 36, no. 1, pp. 263–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Markiewicz and M. C. Goh, “Simulation of atomic force microscope tip-sample/sample-tip reconstruction,” Journal of Vacuum Science and Technology B, vol. 13, no. 3, pp. 1115–1118, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. X. C. Wu, A. M. Bittner, and K. Kern, “Microcontact printing of CDS/dendrimer nanocomposite patterns on silicon wafers,” Advanced Materials, vol. 16, no. 5, pp. 413–417, 2004. View at Scopus
  43. R. McKendry, W. T. S. Huck, B. Weeks, M. Fiorini, C. Abell, and T. Rayment, “Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography,” Nano Letters, vol. 2, no. 7, pp. 713–716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Bhatnagar, S. S. Mark, I. Kim et al., “Dendrimer-Scaffold-based electron-beam patterning of biomolecules,” Advanced Materials, vol. 18, no. 3, pp. 315–319, 2006. View at Publisher · View at Google Scholar · View at Scopus