About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2012 (2012), Article ID 376381, 7 pages
http://dx.doi.org/10.1155/2012/376381
Research Article

Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

1Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102 a, 10000 Zagreb, Croatia
2Croatian National Institute of Public Health, Enviromental Health Service Rockefellerova 7, 10000 Zagreb, Croatia

Received 7 November 2011; Revised 7 February 2012; Accepted 8 February 2012

Academic Editor: Hian Kee Lee

Copyright © 2012 Sanda Rončević et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Blunden and T. Wallace, “Tin in canned food: a review and understanding of occurrence and effect,” Food and Chemical Toxicology, vol. 41, no. 12, pp. 1651–1662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Boogaard, M. Boisset, S. Blunden, S. Davies, T. J. Ong, and J. P. Taverne, “Comparative assessment of gastrointestinal irritant potency in man of tin(II) chloride and tin migrated from packaging,” Food and Chemical Toxicology, vol. 41, no. 12, pp. 1663–1670, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. FAO/WHO Expert Committee on Food Additives, “Evaluation of certain food additives and contaminants,” WHO Technical Report Series 776, Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland, 1989.
  4. J. L. Manzoori, M. Amjadi, and D. Abolhasani, “Spectrofluorimetric determination of tin in canned foods,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1631–1635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. E. S. B. Morte, M. G. A. Korn, M. L. M. F. S. Saraiva, J. L. F. C. Lima, and P. C. A. G. Pinto, “Sequential injection fluorimetric determination of Sn in juices of canned fruits,” Talanta, vol. 79, no. 4, pp. 1100–1103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. F. E. Khansari, M. Ghazi-Khansari, and M. Abdollahi, “Heavy metals content of canned tuna fish,” Food Chemistry, vol. 93, no. 2, pp. 293–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. G. Cameron and J. E. Brittain, “The measurement of tin in canned beans by atomic absorption spectrometry,” International Journal of Food Science & Technology, vol. 6, no. 2, pp. 187–192, 2007. View at Publisher · View at Google Scholar
  8. H. O. Haug and L. Yiping, “Automated determination of tin by hydride generation using in situ trapping on stable coatings in graphite furnace atomic absorption spectrometry,” Spectrochimica Acta B, vol. 50, no. 11, pp. 1311–1324, 1995. View at Scopus
  9. L. Perring and M. Basic-Dvorzak, “Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy,” Analytical and Bioanalytical Chemistry, vol. 374, no. 2, pp. 235–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. E. S. Froes, W. Borges Neto, R. L. P. Naveira, N. C. Silva, C. C. Nascentes, and J. B. B. da Silva, “Exploratory analysis and inductively coupled plasma optical emission spectrometry (ICP OES) applied in the determination of metals in soft drinks,” Microchemical Journal, vol. 92, no. 1, pp. 68–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ikem and N. O. Egiebor, “Assessment of trace elements in canned fishes (mackerel, tuna, salmon, sardines and herrings) marketed in Georgia and Alabama (United States of America),” Journal of Food Composition and Analysis, vol. 18, no. 8, pp. 771–787, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. V. Pournaras, M. I. Prodromidis, A. P. Katsoulidis, A. V. Badeka, D. Georgantelis, and M. G. Kontominas, “Evaluation of lacquered tinplated cans containing octopus in brine by employing X-ray microanalysis and electrochemical impedance spectroscopy,” Journal of Food Engineering, vol. 86, no. 3, pp. 460–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. G. Kontominas, M. I. Prodromidis, E. K. Paleologos, A. V. Badeka, and D. Georgantelis, “Investigation of fish product-metal container interaction using scanning electron microscopy-X-ray microanalysis,” Food Chemistry, vol. 98, no. 2, pp. 225–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P CEN/TS 15506, Foodstuffs-“Determination of trace elements-Determination of tin in fruit and vegetables preserved in cans by flame atomic absorption spectrometry (AAS)”, 2007.
  15. G. H. Alvarez and S. G. Capar, “Determination of tin in foods by hydride generation-atomic absorption spectrometry,” Analytical Chemistry, vol. 59, no. 3, pp. 530–533, 1987. View at Scopus
  16. A. S. Ribeiro, A. L. Moretto, M. A. Z. Arruda, and S. Cadore, “Analysis of powdered coffee and milk by ICP OES after sample treatment with tetramethylammonium hydroxide,” Mikrochimica Acta, vol. 141, no. 3-4, pp. 149–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Wiltsche, I. B. Brenner, G. Knapp, and K. Prattes, “Simultaneous determination of As, Bi, Se, Sn and Te in high alloy steels - Re-evaluation of hydride generation inductively coupled plasma atomic emission spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 22, no. 9, pp. 1083–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. I. Botto, “Matrix interferences in the analysis of organic solutions by inductively coupled plasma-atomic emission spectrometry,” Spectrochimica Acta B, vol. 42, no. 1-2, pp. 181–199, 1987. View at Scopus
  19. T. D. Hettipathirana, A. P. Wade, and M. W. Blades, “Effects of organic acids in low power inductively coupled argon plasma-optical emission spectroscopy,” Spectrochimica Acta B, vol. 45, no. 3, pp. 271–280, 1990. View at Scopus
  20. M. Muntenau, E. Chirila, G. Stanciu, and N. Marin, “Tin determination in canned fruits,” Ovidius University Annals of Chemistry, vol. 21, pp. 79–82, 2010.
  21. J. Knapek, V. Herman, R. Buchtová, and D. Vosmerova, “Determination of tin in canned foods by atomic absorption spectrometry,” Czech Journal of Food Sciences, vol. 27, pp. S407–S409, 2009.
  22. Y. Mino, “Determination of tin in canned foods by X-ray fluorescence spectrometry,” Journal of Health Science, vol. 52, no. 1, pp. 67–72, 2006. View at Scopus