About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2012 (2012), Article ID 850969, 7 pages
http://dx.doi.org/10.1155/2012/850969
Research Article

Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine

1Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI), Campus Parnaíba, 64210260 Parnaíba, PI, Brazil
2Biotec, Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí (UFPI), Campus Ministro Reis Velloso (CMRV), 64202020 Parnaíba, PI, Brazil
3Departamento de Química, Centro de Ciências da Natureza (CCN), Universidade Federal do Piauí (UFPI), 64049550 Teresina, PI, Brazil
4Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos (IFSC), USP, 13560970 São Carlos, SP, Brazil

Received 5 September 2011; Accepted 3 October 2011

Academic Editor: Ricardo Vessecchi

Copyright © 2012 Maysa F. Zampa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Pumera, S. Sánchez, I. Ichinose, and J. Tang, “Electrochemical nanobiosensors,” Sensors and Actuators, B, vol. 123, no. 2, pp. 1195–1205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Gambinossi, P. Baglioni, and G. Caminati, “Hybrid LbL/LB films as molecular OLEDs: an acoustic shear wave attenuation and Brewster angle microscopy study,” Materials Science and Engineering C, vol. 27, no. 5–8, pp. 1056–1060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Sheng and J. Zheng, “Bienzyme system for the biocatalyzed deposition of polyaniline templated by multiwalled carbon nanotubes: a biosensor design,” Biosensors and Bioelectronics, vol. 24, no. 6, pp. 1621–1628, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films, vol. 210-211, no. 2, pp. 831–835, 1992. View at Scopus
  5. F. Caruso, H. Lichtenfeld, M. Giersig, and H. Mohwald, “Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles,” Journal of the American Chemical Society, vol. 120, no. 33, pp. 8523–8524, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, and A. Hirsch, “Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites,” Nature Materials, vol. 1, no. 3, pp. 190–194, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. H. Ding, X. Zhang, M. K. Ram, and C. Nicolini, “Ultrathin films of tetrasulfonated copper phthalocyanine-capped titanium dioxide nanoparticles: fabrication, characterization, and photovoltaic effect,” Journal of Colloid and Interface Science, vol. 290, no. 1, pp. 166–171, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. V. Zucolotto, M. Ferreira, M. R. Cordeiro, C. J. L. Constantino, W. C. Moreira, and O. N. Oliveira Jr., “Nanoscale processing of polyaniline and phthalocyanines for sensing applications,” Sensors and Actuators, B, vol. 113, no. 2, pp. 809–815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Bertoncello and M. Peruffo, “An investigation on the self-aggregation properties of sulfonated copper(II) phthalocyanine (CuTsPc) thin films,” Colloids and Surfaces A, vol. 321, no. 1–3, pp. 106–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Maguire-Zeiss, D. W. Short, and H. J. Federoff, “Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson's disease?” Molecular Brain Research, vol. 134, no. 1, pp. 18–23, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. Arreguin, P. Nelson, S. Padway, M. Shirazi, and C. Pierpont, “Dopamine complexes of iron in the etiology and pathogenesis of Parkinson's disease,” Journal of Inorganic Biochemistry, vol. 103, no. 1, pp. 87–93, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. S. M. Chen and W. Y. Chzo, “Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes,” Journal of Electroanalytical Chemistry, vol. 587, no. 2, pp. 226–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Zhang, K. Gong, H. Zhang, and L. Mao, “Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid,” Biosensors and Bioelectronics, vol. 20, no. 7, pp. 1270–1276, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. Chen and C. S. Cha, “Detection of dopamine in the presence of a large excess of ascorbic acid by using the powder microelectrode technique,” Journal of Electroanalytical Chemistry, vol. 463, no. 1, pp. 93–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. P. C. Nien, P. Y. Chen, and K. C. Ho, “On the amperometric detection and electrocatalytic analysis of ascorbic acid and dopamine using a poly(acriflavine)-modified electrode,” Sensors and Actuators, B, vol. 140, no. 1, pp. 58–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Nicolas and C. El Amri, “The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1537–1550, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. G. D. Brand, J. R. S. A. Leite, S. M. de Sá Mandel et al., “Novel dermaseptins from Phyllomedusa hypochondrialis (Amphibia),” Biochemical and Biophysical Research Communications, vol. 347, no. 3, pp. 739–746, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. G. D. Brand, J. R. S. A. Leite, L. P. Silva et al., “Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: anti-trypanosoma cruzi activity without cytotoxicity to mammalian cells,” The Journal of Biological Chemistry, vol. 277, no. 51, pp. 49332–49340, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. L. Rivas, J. R. Luque-Ortega, and D. Andreu, “Amphibian antimicrobial peptides and Protozoa: lessons from parasites,” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1570–1581, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. F. Zampa, I. M. S. Araújo, V. Costa et al., “Leishmanicidal activity and immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications,” Nanomedicine, vol. 5, no. 3, pp. 352–358, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. F. Lanças, Validação de Métodos Cromatográficos de Análise, Rima, São Carlos, Brazil, 2004.
  22. J. T. S. Irvine, B. R. Eggins, and J. Grimshaw, “The cyclic voltammetry of some sulphonated transition metal phthalocyanines in dimethylsulphoxide and in water,” Journal of Electroanalytical Chemistry, vol. 271, no. 1-2, pp. 161–172, 1989. View at Scopus
  23. C. C. Leznoff and A. B. P. Lever, Phthalocyanines Properties and Applications, vol. 1–4, John Wiley & Sons, New York, NY, USA, 1989.
  24. F. N. Crespilho, V. Zucolotto, O. N. Oliveira Jr., and F. C. Nart, “Electrochemistry of layer-by-layer films: a review,” International Journal of Electrochemical Science, vol. 1, pp. 194–214, 2006.
  25. J. R. Siqueira, L. H. S. Gasparotto, F. N. Crespilho, A. J. F. Carvalho, V. Zucolotto, and O. N. Oliveira Jr., “Physicochemical properties and sensing ability of metallophthalocyanines/ chitosan nanocomposites,” Journal of Physical Chemistry B, vol. 110, no. 45, pp. 22690–22694, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. C. Santos, V. Zucolotto, C. J. L. Constantino, H. N. Cunha, J. R. Dos Santos, and C. Eiras, “Electroactive LbL films of metallic phthalocyanines and poly(0-methoxyaniline) for sensing,” Journal of Solid State Electrochemistry, vol. 11, no. 11, pp. 1505–1510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Eiras, A. C. Santos, M. F. Zampa et al., “Natural polysaccharides as active biomaterials in nanostructured films for sensing,” Journal of Biomaterials Science, Polymer Edition, vol. 21, no. 11, pp. 1533–1543, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. F. Zampa, A. C. F. de Brito, I. L. Kitagawa et al., “Natural gum-assisted phthalocyanine immobilization in electroactive nanocomposites: physicochemical characterization and sensing applications,” Biomacromolecules, vol. 8, no. 11, pp. 3408–3413, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus