About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2012 (2012), Article ID 981758, 12 pages
http://dx.doi.org/10.1155/2012/981758
Research Article

Spectrophotometric Determination of Iron(II) and Cobalt(II) by Direct, Derivative, and Simultaneous Methods Using 2-Hydroxy-1-Naphthaldehyde-p-Hydroxybenzoichydrazone

1Department of Chemistry, S.E.A. College of Engineering and Technology, Bangalore 560049, India
2Department of Chemistry, Sri Krishnadevaraya University, Anantapur 515003, India

Received 5 September 2011; Revised 24 October 2011; Accepted 3 November 2011

Academic Editor: Ricardo Vessecchi

Copyright © 2012 V. S. Anusuya Devi and V. Krishna Reddy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Wildermuth, H. Stark, G. Friedrich, et al., “Iron compounds,” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000.
  2. F. C. Campbell, “Cobalt and cobalt alloys,” in Elements of Metallurgy and Engineering Alloys, pp. 557–558, ASM International, 2008.
  3. M. L. C. Adolfsson, A. K. Saloranta, and M. K. Silander, “Colourant composition for paint products,” US Patent, Patent number: 5985987, 1999.
  4. M. W. Hentze and L. C. Kühn, “Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8175–8182, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Michel, M. Nolte, M. Reich, and F. Loer, “Systemic effects of implanted prostheses made of cobalt-chromium alloys,” Archives of Orthopaedic and Trauma Surgery, vol. 110, no. 2, pp. 61–74, 1991. View at Scopus
  6. J. A. Disegi, R. L. Kennedy, and R. Pillia, Cobalt-Base Alloys for Biomedical Applications, ASTM International Standards, 1999.
  7. J. T. Ellis, I. Schulman, and C. H. Smith, “Generalized siderosis with fibrosis of liver AND pancreas in cooley's (Mediterranean) anemia with observations on the pathogenesis of the siderosis AND fibrosis,” American Journal of Pathology, vol. 30, no. 2, pp. 287–309, 1954.
  8. Wu, Li-Xiang, Guo, and J. Cun, Metallurgical Analysis, vol. 24, no. 3, pp. 66–68, 2004. View at Scopus
  9. L. Zaijun, F. You, L. Zhongyun, and T. Jian, “Spectrophotometric determination of iron(III)-dimethyldithiocarbamate (ferbam) using 9-(4-carboxyphenyl)-2,3,7-trihydroxyl-6-fluorone,” Talanta, vol. 63, no. 3, pp. 647–651, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. Qi-Kai Zhang, Ling-Zhao Kong, and Li Wang, “Spectrophotometric determination of micro amount of iron in oils with thiocyanate-phenanthroline-OP,” Fenxi Shiyanshi (Analytical Laboratory), vol. 24, no. 1, pp. 77–79, 2005.
  11. P. K. Tarafder and R. Thakur, “Surfactant-mediated extraction of iron and its spectrophotometric determination in rocks, minerals, soils, stream sediments and water samples,” Microchemical Journal, vol. 80, no. 1, pp. 39–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. F. G. Martins, J. F. Andrade, A. C. Pimenta, L. M. Lourenco, J. R. M. Casto, and V. R. Balbo, “Spectrophotometric study of iron oxidation in the iron(II)/thiocyanate/acetone system and some analytical applications,” Eclética Química, vol. 30, no. 3, pp. 63–71, 2005.
  13. A. K. Sharma and I. Singh, “Spectrophotometric trace determination of iron in food, milk, and tea samples using a new bis-azo dye as analytical reagent,” Food Analytical Methods, vol. 2, no. 3, pp. 221–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. I. Cheng-hong, G. E. Chang-hua, L. Hua-ding, and P. Fu-you, “Spectrophotometric determination of iron with 2-(5-carboxy-1,3,4-triazolylazo)-5-diethylamino aniline,” Science Technology and Engineering, vol. 21, pp. 5780–5782, 2008.
  15. Q. Z. Zhai, “Catalytic kinetic spectrophotometric determination of trace copper with copper(II)-p-acetylchlorophosphonazo-hydrogen peroxide system,” Bulletin of the Chemical Society of Ethiopia, vol. 23, no. 3, pp. 327–335, 2009.
  16. A. K. Malik, K. N. Kaul, B. S. Lark, W. Faubel, and A. L. J. Rao, “Spectrophotometric determination of cobalt, nickel palladium, copper, ruthenium and molybdenum using sodium isoamylxanthate in presence of surfactants,” Turkish Journal of Chemistry, vol. 25, no. 1, pp. 99–105, 2001. View at Scopus
  17. B. R. Reddy, P. Radhika, J. R. Kumar, D. N. Priya, and K. Rajgopal, “Extractive spectrophotometric determination of cobalt(II) in synthetic and pharmaceutical samples using cyanex 923,” Analytical Sciences, vol. 20, no. 2, pp. 345–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. Shar and G. A. Soomro, “Spectrophotometric determination of cobalt(II), nickel(II) and copper (II) with 1-(2 pyridylazo)-2-naphthol in micellar medium,” The Nucleus, vol. 41, pp. 77–82, 2004.
  19. N. Veerachalee, P. Taweema, and A. Songsasen, “Complexation and spectrophotometric determination of cobalt(II) ion with 3-(2′-thiazolylazo)-2,6-diaminopyridine,” Kasetsart Journal—Natural Science, vol. 41, no. 4, pp. 675–680, 2007. View at Scopus
  20. Y. Haoyi, Z. Guoxiu, and Y. Gaohua, “Determination of cobalt in terephthalic acid by picramazochrom spectrophotometry,” Chemical Analysis and Meterage, vol. 1, 2009.
  21. S. H. Guzar and Q. H. Jin, “Simple, selective, and sensitive spectrophotometric method for determination of trace amounts of nickel(II), copper (II), cobalt (II), and iron (III) with a novel reagent 2-pyridine carboxaldehyde isonicotinyl hydrazone,” Chemical Research in Chinese Universities, vol. 24, no. 2, pp. 143–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. G. Prabhulkar and R. M. Patil, “2-Hydroxy-1-naphthalidine salicylohydrazone as an analytical reagent for extractive spectrophotometric determination of a biologically and industrially important metal Cobalt(II),” International Journal of Chemical Sciences, vol. 6, no. 3, pp. 1480–1485, 2008.
  23. J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry, Harper Collins, New York, NY, USA, 4th edition, 1993.
  24. T. Katami, T. Hayakawa, M. Furukawa, and S. Shibata, “Extraction—spectrophotometric determination of iron with 2-[2-(3,5-Dibromopyridyl)azo]-5-dimethylaminobenzoic acid,” The Analyst, vol. 109, no. 2, pp. 159–162, 1984. View at Scopus
  25. A. Morales and M. I. Toral, “Extraction—spectrophotometric determination of iron as the ternary tris(1,10-phenanthroline)-iron(II)-picrate complex,” The Analyst, vol. 110, no. 12, pp. 1445–1449, 1985. View at Scopus
  26. M. R. P. Reddy, P. V. S. Kumar, J. P. Shyamsundar, and J. S. Anjaneyulu, “Extractive spectrophotometric method for the determination of iron in titanium base alloys using 4- (2-Pyridylazo) resorcinol and a long chain quaternary ammonium salt,” Journal of the Indian Chemical Society, vol. 66, pp. 437–439, 1989. View at Scopus
  27. A. K. Malik and A. L. J. Rao, “Spectrophotometric determination of iron(III) dimethyldithiocarbamate (ferbam),” Talanta, vol. 44, no. 2, pp. 177–183, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. Patil and D. G. Dhuley, “Solvent extraction and spectrophotometric determination of Fe(II) with 1,3-diphenyl-4-carboethoxy pyrazole-5-one,” Indian Journal of Chemistry, vol. 39, no. 10, pp. 1105–1106, 2000. View at Scopus
  29. B. M. Nagabhushana, G. T. Chandrappa, B. Nagappa, and N. H. Nagaraj, “Diformylhydrazine as analytical reagent for spectrophotometric determination of iron(II) and iron(III),” Analytical and Bioanalytical Chemistry, vol. 373, no. 4-5, pp. 299–303, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. M. Wang, C. Song, and J. Jin, “Spectrophotometric determination of iron by extraction of its ternary complex with 4,7-diphenyl-1,10-phenanthroline and tetraphenylborate into molten naphthalene,” Fenxi Shiyanshi (Analytical Laboratory), vol. 23, no. 9, pp. 48–50, 2004.
  31. F. G. Martins, J. F. Andrade, A. C. Pimenta, L. M. Lourenco, J. R. M. Casto, and V. R. Balbo, “Spectrophotometric study of iron oxidation in the iron(II) thiocyanateacetone system and some analytical application,” Electica Quimica, vol. 30, no. 3, pp. 63–71, 2005.
  32. S. S. Patil and A. D. Sawant, “Pyridine-2-acetaldehyde salicyloylhydrazone as reagent for extractive and spectrophotometric determination of cobalt(II) at trace level,” Indian Journal of Chemical Technology, vol. 8, no. 2, pp. 88–91, 2001.
  33. S. Adinarayana Reddy, K. Janardhan Reddy, S. Lakshmi Narayana, Y. Sarala, and A. Varada Reddy, “Synthesis of new reagent 2,6-diacetylpyridine bis-4-phenyl-3- thiosemicarbazone (2,6-DAPBPTSC): Selective, sensitive and extractive spectrophotometric determination of Co(II) in vegetable, soil, pharmaceutical and alloy samples,” Journal of the Chinese Chemical Society, vol. 55, no. 2, pp. 326–334, 2008.
  34. Q. Qiufen, G. Yang, X. Dong, and J. Yin, “Study on the solid phase extraction and spectrophotometric determination of cobalt with 2-(2-quinolylazo)-5-diethylaminoaniline,” Turkish Journal of Chemistry, vol. 28, no. 5, pp. 611–619, 2004.
  35. A. P. Kumar, P. R. Reddy, and V. K. Reddy, “Direct and derivative spectrophotometric determination of cobalt (II) in microgram quantities with 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone,” Journal of the Korean Chemical Society, vol. 51, no. 4, pp. 331–338, 2007.
  36. F. G. Martins, J. F. Andrade, A. C. Pimenta, L. M. Lourenço, J. R. M. Castro, and V. R. Balbo, “Spectrophotometric study of iron oxidation in the iron(II)/thiocyanate/ acetone system and some analytical applications,” Ecletica Quimica, vol. 30, no. 3, pp. 63–71, 2005. View at Publisher · View at Google Scholar