About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2013 (2013), Article ID 137279, 11 pages
http://dx.doi.org/10.1155/2013/137279
Research Article

Two Validated Spectrofluorometric Methods for Determination of Gemifloxacin Mesylate in Tablets and Human Plasma

1Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia

Received 12 February 2013; Revised 16 April 2013; Accepted 16 April 2013

Academic Editor: Hian Kee Lee

Copyright © 2013 Noha N. Atia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. I. Oh, K. S. Paek, M. J. Ahn et al., “In vitro and in vivo evaluations of LB20304, a new fluoronaphthyridone,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 6, pp. 1564–1568, 1996. View at Scopus
  2. A. Schulte and P. Heisig, “In vitro activity of gemifloxacin and five other fluoroquinolones against defined isogenic mutants of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 6, pp. 1037–1038, 2000. View at Scopus
  3. L. D. Saravolatz and J. Leggett, “Gatifloxacin, gemifloxacin, and moxifloxacin: the role of 3 newer fluoroquinolones,” Clinical Infectious Diseases, vol. 37, no. 9, pp. 1210–1215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. V. Krishna and D. G. Sankar, “Utility of σ and π-acceptors for the spectrophotometric determination of gemifloxacin mesylate in pharmaceutical formulations,” E-Journal of Chemistry, vol. 5, no. 3, pp. 493–498, 2008. View at Scopus
  5. M. V. Krishna and D. G. Sankar, “Spectrophotometric determination of gemifloxacin mesylate in pharmaceutical formulations through ion-pair complex formation,” E-Journal of Chemistry, vol. 5, no. 3, pp. 515–520, 2008. View at Scopus
  6. A. A. Elbashir, B. Saad, A. S. M. Ali, K. M. M. Al-Azzam, and H. Y. Aboul-Enein, “Validated stability indicating assay of gemifloxacin and lomefloxacin in tablet formulations by capillary electrophoresis,” Journal of Liquid Chromatography and Related Technologies, vol. 31, no. 10, pp. 1465–1477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Doyle, S. E. Fowles, D. F. McDonnell, R. McCarthy, and S. A. White, “Rapid determination of gemifloxacin in human plasma by high-performance liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 746, no. 2, pp. 191–198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. B. M. H. Al-Hadiya, A. A. Khady, and G. A. E. Mostafa, “Validated liquid chromatographic-fluorescence method for the quantitation of gemifloxacin in human plasma,” Talanta, vol. 83, no. 1, pp. 110–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Rote and S. P. Pingle, “Reverse phase-HPLC and HPTLC methods for determination of gemifloxacin mesylate in human plasma,” Journal of Chromatography B, vol. 877, no. 29, pp. 3719–3723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. F. Youssef and L. I. Bebawy, “Spectrofluorimetric methods for the determination of gemifloxacin mesylate and cefamandole nafate in bulk powder and pharmaceutical preparations,” Bulletin of the Faculty of Pharmacy, vol. 44, no. 3, pp. 215–227, 2006.
  11. S. K. Tekkeli and A. Önal, “Spectrofluorimetric methods for the determination of gemifloxacin in tablets and spiked plasma samples,” Journal of Fluorescence, vol. 21, no. 3, pp. 1001–1007, 2011. View at Publisher · View at Google Scholar
  12. M. Rizk, F. Belal, F. Ibrahim, S. Ahmed, and N. El-Enany, “Spectrofluorimetric analysis of certain 4-quinolone in pharmaceuticals and biological fluids,” Pharmaceutica Acta Helvetiae, vol. 74, no. 4, pp. 371–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Vílchez, J. Taoufiki, O. Ballesteros, and A. Navalón, “Micelle-enhanced spectrofluorimetric method for the determination of antibacterial trovafloxacin in human urine and serum,” Microchimica Acta, vol. 150, no. 3-4, pp. 247–252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Ocaña, F. J. Barragán, and M. Callejón, “Spectrofluorimetric and micelle-enhanced spectrofluorimetric determination of gatifloxacin in human urine and serum,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 2, pp. 327–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. O. González, M. Callejón Mochón, and F. J. B. De La Rosa, “Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum,” Talanta, vol. 52, no. 6, pp. 1149–1156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Wang, Z. Liu, H. Yuan, and R. Cai, “Micelle enhanced catalytic-fluorimetric determination of hemoglobin,” Chinese Journal of Analytical Chemistry, vol. 29, no. 4, pp. 423–424, 2001. View at Scopus
  17. J. L. Manzoori and M. Amjadi, “Spectrofluorimetric and micelle-enhanced spectrofluorimetric methods for the determination of gemfibrozil in pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 31, no. 3, pp. 507–513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Al-Zehouri, S. Al-Madi, and F. Belal, “Determination of the antiepileptics vigabatrin and gabapentin in dosage forms and biological fluids using Hantzsch reaction,” Arzneimittel-Forschung, vol. 51, no. 2, pp. 97–103, 2001. View at Scopus
  19. S. M. Sabry, M. Abdel-Hady, M. Elsayed, O. T. Fahmy, and H. M. Maher, “Study of stability of methotrexate in acidic solution Spectrofluorimetric determination of methotrexate in pharmaceutical preparations through acid-catalyzed degradation reaction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 32, no. 3, pp. 409–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Lee, X. Qiao, D. E. Goeger, and K. E. Anderson, “Fluorometric measurement of 5-aminolevulinic acid in serum,” Clinica Chimica Acta, vol. 347, no. 1-2, pp. 183–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Peng and C. Jiang, “A new spectrofluorimetric method for determination of trace amounts 5-hydroxytryptamine in human urine and serum,” Journal of Fluorescence, vol. 17, no. 3, pp. 339–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Peng, J. He, and C. Jiang, “A new spectrofluorimetric method for determination of trace amounts histamine in human urine and serum,” Luminescence, vol. 24, no. 3, pp. 135–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. B. Wankhede, A. M. Mahajan, and S. S. Chitlange, “Simultaneous spectrophotometric estimation of gemifloxacin mesylate and ambroxol hydrochloride in tablets,” Der Pharma Chemica, vol. 3, no. 1, pp. 269–273, 2011. View at Scopus
  24. D. Nagavalli, G. Abirami, and S. K. Kumar, “Validated HPLC method for the simultaneous estimation of gemifloxacin mesylate and ambroxol hydrochloride in bulk and tablet dosage form,” Journal of Pharmacy Research, vol. 4, no. 6, pp. 1701–1703, 2011.
  25. A. I. Vogel, G. H. Jeffery, and A. Israel, Vogel's Textbook of Quantitative Chemical Analysis, 1989.
  26. C. C. Wang, A. N. Masi, and L. Fernández, “On-line micellar-enhanced spectrofluorimetric determination of rhodamine dye in cosmetics,” Talanta, vol. 75, no. 1, pp. 135–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Pramauro and E. Pelezetti, Surfactants in Analytical Chemistry: Applications of Organized Amphiphilic Media, 1996.
  28. P. Paton-Morales and F. I. Talens-Alesson, “Effect of ionic strength and competitive adsorption of Na+ on the flocculation of lauryl sulfate micelles with Al3+,” Langmuir, vol. 17, no. 20, pp. 6059–6064, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. M. Valente, H. D. Burrows, R. F. Pereira, A. C. F. Ribeiro, J. L. G. C. Pereira, and V. M. M. Lobo, “Effect of europium(III) chloride on the aggregation behavior of sodium dodecyl sulfate,” Langmuir, vol. 22, no. 13, pp. 5625–5629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. C. S. Neves, A. J. M. Valente, H. D. Burrows, A. C. F. Ribeiro, and V. M. M. Lobo, “Effect of terbium(III) chloride on the micellization properties of sodium decyl- and dodecyl-sulfate solutions,” Journal of Colloid and Interface Science, vol. 306, no. 1, pp. 166–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Ohannesian and A. Streeter, Handbook of Pharmaceutical Analysis, New York, NY, USA, 2001.
  32. L. Ohannesian and A. J. Streeter, Handbook of Pharmaceutical Analysis, Edited by M. Dekker, 2002.
  33. M. J. Rosen, Surfactants and Interfacial Phenomena, New York, NY, USA, 1989.
  34. D. A. Skoog, D. M. west, F. J. Holler, and S. R. Crouch, Fundamentals of Analytical Chemistry, Brooks Cole, Belmont, Calif, USA, 2004.
  35. R. Leung and D. O. Shah, “Dynamic properties of micellar solutions. I. Effects of short-chain alcohols and polymers on micellar stability,” Journal of Colloid And Interface Science, vol. 113, no. 2, pp. 484–499, 1986. View at Scopus
  36. I. C. H. Guideline, Q2(R1) Validation of Analytical Procedures: Text and Methodology, 2005.
  37. A. Allen, E. Bygate, S. Oliver et al., “Pharmacokinetics and tolerability of gemifloxacin (SB-265805) after administration of single oral doses to healthy volunteers,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 6, pp. 1604–1608, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Hobara, H. Kameya, N. Hokama, S. Ohshiro, and M. Sakanashi, “Rapid and simple determination of fleroxacin in rat plasma using a solid-phase extraction column,” Journal of Chromatography B, vol. 703, no. 1-2, pp. 279–283, 1997. View at Publisher · View at Google Scholar · View at Scopus