About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2013 (2013), Article ID 628397, 4 pages
http://dx.doi.org/10.1155/2013/628397
Research Article

Determination of Mercury in Ayurvedic Dietary Supplements That Are Not Rasa Shastra Using the Hydra-C Direct Mercury Analyzer

Total Diet and Pesticide Research Center, U.S. Food and Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA

Received 4 February 2013; Accepted 10 April 2013

Academic Editor: Xiaolin Hou

Copyright © 2013 Amir A. Abdalla and Robert E. Smith. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. Gogtay, H. A. Bhatt, S. S. Dalvi, and N. A. Kshirsagar, “The use and safety of non-allopathic Indian medicines,” Drug Safety, vol. 25, no. 14, pp. 1005–1019, 2002. View at Scopus
  2. A. D. Satpute, Rasa Ratna Samuchaya of Vagbhatta, trans, Chaukhamba Sanskrit Pratishtana, Varanasi, India, 2003.
  3. R. B. Saper, S. N. Kales, J. Paquin et al., “Heavy metal content of Ayurvedic herbal medicine products,” The Journal of the American Medical Association, vol. 292, no. 23, pp. 2868–2873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. B. Saper, R. S. Phillips, A. Sehgal et al., “Lead, mercury, and arsenic in US- and Indian-manufactured Ayurvedic medicines sold via the internet,” The Journal of the American Medical Association, vol. 300, no. 8, pp. 915–923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. United States Food and Drug Administration, Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed, United States Food and Drug Administration, Springfield, Va, USA, 2000.
  6. A. Kumar, A. G. C. Nair, A. V. R. Reddy, and A. N. Garg, “Bhasmas: unique Ayurvedic metallic-herbal preparations, chemical characterization,” Biological Trace Element Research, vol. 109, no. 3, pp. 231–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. P. Dolan, D. A. Nortrup, P. M. Bolger, and S. G. Capar, “Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 51, no. 5, pp. 1307–1312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. N. Rao and M. V. N. K. Talluri, “An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Qiu, X. Feng, P. Li et al., “Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China,” Journal of Agricultural and Food Chemistry, vol. 56, no. 7, pp. 2465–2468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Smith, “Microwave digestion of foods using the Milestone Q20 quartz rotor set,” LIB, 4458, 2010, http://inside.fda.gov:9003/downloads/PolicyProcedures/Laboratories/LaboratoryInformationBulletins/UCM224868.pdf.
  11. United States Environmental Protection Agency, Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, U.S. EPA, Office of Water, Washington, DC, USA, 2002.
  12. D. L. Pfeil and M. L. Bruce, “Automated determination of mercury by cold vapor atomic fluorescence with gold amalgamation,” The American Laboratory, vol. 33, no. 18, pp. 26–30, 2001. View at Scopus
  13. J. B. Tomar, S. K. Bishnoi, and K. K. Saini, “Healing the traditional way: ethno-medicinal formulations used by the tribes of Jharkhand, India,” International Journal of Medicinal and Aromatic Plants, vol. 2, pp. 97–105, 2012.
  14. V. N. Sumantran, A. A. Kulkarni, A. Harsulkar et al., “Hyaluronidase and collagenase inhibitory activities of the herbal formulation Triphala guggulu,” Journal of Biosciences, vol. 32, no. 4, pp. 755–761, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, “Multiple biological activities of curcumin: a short review,” Life Sciences, vol. 78, no. 18, pp. 2081–2087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. S. Lavekar, B. Ravishankar, S. V. Rao, V. J. Shukla, B. K. Ashok, and S. N. Gaidhani, “Safety study on a selected Ayurvedic formulation: Mahasudarshan Ghan Vati,” Indian Drugs, vol. 46, pp. 850–859, 2009.
  17. A. K. Meena, A. Sachan, R. Kaur et al., “Quality assessment of different variants of Yogaraj Guggulu,” International Journal of Pharmaceutical Quality Assurance, vol. 2, pp. 35–37, 2010.
  18. V. Madhavan, R. D. Tijare, R. Mythreyi, M. R. Gurudeva, and S. N. Yoganarasimhan, “Pharmacognostical studies on the root tubers of Asparagus gonoclados Baker-Alternate source for the Ayurvedic drug Shatavari,” Indian Journal of Natural Products and Resources, vol. 1, no. 1, pp. 57–62, 2010. View at Scopus
  19. I. Jayawardene, R. Saper, N. Lupoli, A. Sehgal, R. O. Wright, and C. Amarasiriwardena, “Determination of in vitro bioaccessibility of Pb, As, Cd and Hg in selected traditional Indian medicines,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 8, pp. 1275–1282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. P. Agarwal, R. Khanna, R. Karmarkar, M. K. Anwer, and R. K. Khar, “Shilajit: a review,” Phytotherapy Research, vol. 21, no. 5, pp. 401–405, 2007. View at Publisher · View at Google Scholar
  21. C. C. Smith, A. M. Abdalla, and R. E. Smith, “Determination of mercury and other metals in red yeast rice,” Journal of Natural Products, vol. 2, no. 2, pp. 114–117, 2012. View at Publisher · View at Google Scholar