About this Journal Submit a Manuscript Table of Contents
International Journal of Analytical Chemistry
Volume 2013 (2013), Article ID 978968, 6 pages
http://dx.doi.org/10.1155/2013/978968
Research Article

The Rate of Decolorization of a Radical Ion Reagent Was Used to Determine the Phenolic Content of Various Food Extracts

Solar Physics Corporation, P.O. Box 548, Locust Valley, NY 11560, USA

Received 19 June 2013; Revised 8 August 2013; Accepted 26 August 2013

Academic Editor: M. A. Raggi

Copyright © 2013 Arthur Bradley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Scalbert, I. T. Johnson, and M. Saltmarsh, “Polyphenols: antioxidants and beyond,” The American journal of clinical nutrition, vol. 81, no. 1, pp. 2155–2175, 2005. View at Scopus
  2. J. Lee, N. Koo, and D. B. Min, “Reactive oxygen species, aging, and antioxidative nutraceuticals,” Comprehensive Reviews in Food Science and Food Safety, vol. 3, no. 1, pp. 21–37, 2004. View at Publisher · View at Google Scholar
  3. J.-K. Moon and T. Shibamoto, “Antioxidant assays for plant and food components,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1655–1666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Leo, A. Leone, C. Longo, D. A. Lombardi, F. Raimo, and G. Zacheo, “Antioxidant compounds and antioxidant activity in early potatoes,” Journal of Agricultural and Food Chemistry, vol. 56, no. 11, pp. 4154–4163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Łata and K. Tomala, “Apple peel as a contributor to whole fruit quantity of potentially healthful bioactive compounds. Cultivar and year implication,” Journal of Agricultural and Food Chemistry, vol. 55, no. 26, pp. 10795–10802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Joseph, D. A. Nadeau, and A. Underwood, Color Code, Hyperion, NYC, 2002.
  7. D. Jimenez-Alvarez, F. Giuffrida, F. Vanrobaeys et al., “High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro,” Journal of Agricultural and Food Chemistry, vol. 56, no. 10, pp. 3470–3477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Manthey and P.-V. Penelope, “Total phenols, in vitro antioxidant capacity, and phenolic profiles of five varieties of mango,” Journal of Agricultural and Food Chemistry, vol. 57, no. 22, pp. 10825–10830, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Solomon, S. Golubowicz, Z. Yablowicz et al., “Antioxidant activities and anthocyanin content of fresh fruits of common fig,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7717–7723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wu, L. Gu, J. Holden et al., “Development of a database for total antioxidant capacity in foods: a preliminary study,” Journal of Food Composition and Analysis, vol. 17, no. 3-4, pp. 407–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Xie, W. Liu, H. Huang et al., “Chemical composition of five commercial gynostemma pentaphyllum samples and their radical scavenging, antiproliferative, and anti-inflammatory properties,” Journal of Agricultural and Food Chemistry, vol. 58, no. 21, pp. 11243–11249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. B. Walker and J. D. Everette, “Comparative reaction rates of various antioxidants with ABTS radical cation,” Journal of Agricultural and Food Chemistry, vol. 57, no. 4, pp. 1156–1161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. J. Barton, “Standardization of methods for the estimation of total antioxidant activity by the use of extrapolation to zero sample concentration. A novel standard. 1. ABTS cation radical scavenging,” Journal of Agricultural and Food Chemistry, vol. 58, no. 16, pp. 8918–8926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. S. Ballard, P. Mallikarjunan, K. Zhou, and S. F. O'keefe, “Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology,” Journal of Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3064–3072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Tsujita, M. Yamada, T. Takaku, T. Shintani, K. Teramoto, and T. Sato, “Purification and characterization of polyphenols from chestnut astringent skin,” Journal of Agricultural and Food Chemistry, vol. 59, no. 16, pp. 8646–8654, 2011. View at Publisher · View at Google Scholar · View at Scopus