International Journal of Analytical Chemistry
 Journal metrics
See full report
Acceptance rate21%
Submission to final decision93 days
Acceptance to publication15 days
CiteScore2.300
Journal Citation Indicator0.380
Impact Factor1.8

Urine Test Strip Quantitative Assay with a Smartphone Camera

Read the full article

 Journal profile

International Journal of Analytical Chemistry publishes research reporting new experimental results and chemical methods, especially in relation to important analytes, difficult matrices, and topical samples.

 Editor spotlight

Chief Editor, Professor Charles L. Wilkins, is a Distinguished Professor of Chemistry and Biochemistry at the University of Arkansas, USA. His research focuses on the development of novel analytical chemistry instrumentation and analysis paradigms.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A Simple and Rapid LC-MS/MS Method for the Quantification of Nirmatrelvir/Ritonavir in Plasma of Patients with COVID-19

The combined prescriptions of nirmatrelvir/ritonavir and other drugs are limited due to potential drug-drug interactions, so therapeutic drug monitoring (TDM) becomes particularly important. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for determination of the nirmatrelvir/ritonavir in plasma of patients with COVID-19, providing technical and theoretical support for the TDM. Plasma samples were processed by protein precipitation using acetonitrile, and analytes were separated on an Agilent Poroshell 120 SB-C18 (2.1 × 75 mm, 2.7 μm) column at 35°C. Acetonitrile and 0.1% formic acid in water (52 : 48) were utilized as the mobile phases at a flow rate of 0.3 mL/min. In the multiple reaction monitoring (MRM) mode, nirmatrelvir and ritonavir were monitored using precursor/product ions: m/z 500.2/110.1 and 721.3/296.1, respectively, with selinexor as the internal standard. The linear range of both analytes was 2.0 ng/mL to 5000 ng/mL with good inter- and intraday precision and accuracy, and the recovery was 92.0%–107% for nirmatrelvir and 85.7%–106% for ritonavir. Finally, this method was successfully applied to monitor the exposure levels of nirmatrelvir/ritonavir in plasma samples from hemodialysis patients.

Research Article

Pharmacokinetics of Ziyuglycoside I and Ziyuglycoside II in Rat Plasma by UPLC-MS/MS

Ziyuglycoside I and ziyuglycoside II are important active components of Sanguisorba officinalis L., which have excellent pharmacological effects, such as antioxidant and anticancer effects. However, the bioavailability of ziyuglycoside I and ziyuglycoside II has not been reported. This work aims to establish a UPLC-MS/MS method to study the pharmacokinetics of ziyuglycoside I and ziyuglycoside II in rats under different administration routes (intragastric and intravenous administration) and to calculate the bioavailability. The concentration of ziyuglycoside I and ziyuglycoside II in rat plasma in the range of 2–2000 ng/mL showed a good linear relationship (r > 0.99). The intra-day accuracies of ziyuglycoside I and ziyuglycoside II ranged from 87% to 110%, and the inter-day accuracies ranged from 97% to 109%. The intra-day precision was less than 15% and the inter-day precision was less than 14%. The matrix effects ranged from 88% to 113%. The recoveries were all above 84%. The developed UPLC-MS/MS method for the determination of ziyuglycoside I and ziyuglycoside II in rat plasma was applied to pharmacokinetics. The bioavailability of ziyuglycoside I and ziyuglycoside II was measured at 2.6% and 4.6%, respectively.

Research Article

Development of a Novel Multiplex PCR Method for the Rapid Detection of SARS-CoV-2, Influenza A Virus, and Influenza B Virus

Objective. A sensitive and specific multiplex fluorescence rapid detection method was established for simultaneous detection of SARS-CoV-2, influenza A virus, and influenza B virus in a self-made device within 30 min, with a minimum detection limit of 200 copies/mL. Methods. Based on the genome sequences of SARS-CoV-2, influenza A virus (FluA), and influenza B virus (FluB) with reference to the Chinese Center for Disease Control and Prevention and related literature, specific primers were designed, and a multiplex fluorescent PCR system was established. The simultaneous and rapid detection of SARS-CoV-2, FluA, and FluB was achieved by optimizing the concentrations of Taq DNA polymerase as well as primers, probes, and Mg2+. The minimum detection limits of the nucleic acid rapid detection system for SARS-CoV-2, FluA, and FluB were evaluated. Results. By optimizing the amplification system, the N enzyme with the best amplification performance was selected, and the optimal concentration of Mg2+ in the multiamplification system was 3 mmol/L; the final concentrations of SARS-CoV-2 NP probe and primer were 0.15 μmol/L and 0.2 μmol/L, respectively; the final concentrations of SARS-CoV-2 ORF probe and primer were both 0.15 μmol/L; the final concentrations of FluA probe and primer were 0.2 μmol/L and 0.3 μmol/L, respectively; the final concentrations of FluB probe and primer were 0.15 μmol/L and 0.25 μmol/L, respectively. Conclusion. A multiplex real-time quantitative fluorescence RT-PCR system for three respiratory viruses of SARS-CoV-2, FluA, and FluB was established with a high amplification efficiency and sensitivity reaching 200 copies/mL for all samples. Combined with the automated microfluidic nucleic acid detection system, the system can achieve rapid detection in 30 minutes.

Research Article

Validation and Application of Screen-Printed Microchip for Potentiometric Determination of Metformin Hydrochloride in Tablet Dosage Form

Metformin is an oral biguanides hypoglycaemic agent, which used to lower the blood glucose levels in people with type 2 diabetes mellitus. Many analytical techniques have been used to quantify the drug in different pharmaceutical dosage forms; however, most of these methods have limited throughput in the quality control application. A disposable potentiometric microsensor responsive to metformin has recently been reported. For the first time, herein, this method of analysis has been validated according to IUPAC recommendations and successfully applied in the determination of metformin drug in some dosage form. Different drug formulations of metformin hydrochloride have been collected from the local pharmaceutical stores in Saudi Arabia and analysed using the validated microchip-based method of analysis. Subsequently, the results of this study showed that the validated method was linear, specific, precise, and accurate. The linear range was 1 × 10−1–1 × 10−5 mol L−1 and the correlation coefficient was 0.999. The limit of detection was 2.89 × 10−6 mol L−1, and the limit of quantification was 8.77 × 10−6 mol L−1. This method demonstrated high precision, with an RSD% of less than 2.22%. The accuracy of this method was obtained by comparing the recovery percentage with percentage values less than 5%. The results obtained showed that there was no significant difference between the references, label, and recovery of less than 5%.

Research Article

Method Development for Simultaneously Determining Indomethacin and Nicotinamide in New Combination in Oral Dosage Formulations and Co-Amorphous Systems Using Three UV Spectrophotometric Techniques

This research aims to develop methods for simultaneously determining indomethacin (IND) and nicotinamide (NCT) in binary mixtures, immediate-release capsules, sustained-release capsules, and co-amorphous systems, which were designed in 2021 to improve the solubility, dissolution rate, and stability of the amorphous state of indomethacin. Moreover, this new combination may have also other possible medical benefits. Therefore, there is a need to have simple, sensitive, and precise developed methods for simultaneous quantification analysis of IND/NCT in several different ratios. Three UV-spectrophotometry techniques were deployed: zero-crossing point in the second-order derivative, dual-wavelength in the first-order derivative, and ratio subtraction coupled with spectrum subtraction. The limit of detection and the limit of quantifications (LOD and LOQ) for IND were 0.41 and 1.25, 0.55 and 1.66, and 0.53 and 1.62 μg/mL, respectively, while for NCT were 0.53 and 1.59, 0.38 and 1.14, and 0.36 and 1.08 μg/mL, respectively. All methods were linear at least in the range of 2.5–40.0 μg/mL. All proposed methods were validated according to ICH guidelines and their application on the dosage formulations was carried out. Finally, the proposed methods were compared to a reference method for each IND and NCT, and no significant statistical variance was found.

Research Article

Analysis of Quality Differences in Radix Dipsaci before and after Processing with Salt Based on Quantitative Control of HPLC Multi-Indicator Components Combined with Chemometrics

Radix Dipsaci (RD) is the dry root of the Dipsacus asper Wall. ex DC., which is commonly used for tonifying the kidney and strengthening bone. The purpose of this study was to analyze the difference between raw and salt-processed RD from the chemical composition comprehensively. The fingerprints of raw and salt-processed RD were established by HPLC-DAD to determine the contents of loganin (LN), asperosaponin VI (AVI), caffeic acid (CaA), dipsanoside A (DA), dipsanoside B (DB), chlorogenic acid (CA), loganic acid (LA), isochlorogenic acid A (IA), isochlorogenic acid B (IB), and isochlorogenic acid C (IC). The results showed that after processing with salt, the components with increased contents were LA, CaA, DA, and AVI, and the components with decreased contents were CA, LN, IB, IA, IC, and DB. Then, the chemometric methods such as principal component analysis (PCA) and fisher discriminant analysis (FDA) were used to evaluate the quality of raw and salt-processed RD. In the classification of raw and salt-processed RD, the order of importance of each chemical component was LA > DB > IA > IC > IB > LN > CA > DA > AVI > CaA. These integrated methods successfully assessed the quality of raw and salt-processed RD, which will provide guidance for the development of RD as a clinical medication.

International Journal of Analytical Chemistry
 Journal metrics
See full report
Acceptance rate21%
Submission to final decision93 days
Acceptance to publication15 days
CiteScore2.300
Journal Citation Indicator0.380
Impact Factor1.8
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.