About this Journal Submit a Manuscript Table of Contents
International Journal of Alzheimer’s Disease
Volume 2011 (2011), Article ID 501862, 34 pages
http://dx.doi.org/10.4061/2011/501862
Research Article

Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System

PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex TN34 2EY, UK

Received 3 August 2011; Accepted 2 September 2011

Academic Editor: Francesco Panza

Copyright © 2011 Chris Carter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Carter, “The fox and the rabbits, environmental variables and population genetics. 1: replication problems in association studies and the untapped power of GWAS. 2: vitamin A deficiency, herpes simplex reactivation and other causes of Alzheimer's disease,” ISRN Neurology, vol. 2011, Article ID 394678, 29 pages, 2011. View at Publisher · View at Google Scholar
  2. C. J. Carter, “Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes: relevance to pathological-signalling cascades,” Neurochemistry International, vol. 52, no. 6, pp. 920–934, 2008. View at Publisher · View at Google Scholar · View at PubMed
  3. C. J. Carter, “Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis,” Neurochemistry International, vol. 50, no. 1, pp. 12–38, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. A. Papassotiropoulos, M. A. Wollmer, M. Tsolaki et al., “A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease,” Journal of Clinical Psychiatry, vol. 66, no. 7, pp. 940–947, 2005.
  5. R. Menon and C. Farina, “Shared molecular and functional frameworks among five complex human disorders: a comparative study on interactomes linked to susceptibility genes,” PLoS ONE, vol. 6, no. 4, Article ID e18660, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. A. C. Naj, G. W. Beecham, E. R. Martin et al., “Dementia revealed: novel chromosome 6 locus for Late-onset alzheimer disease provides genetic evidence for Folate-pathway abnormalities,” PLoS Genetics, vol. 6, no. 9, Article ID e1001130, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. D. Liolitsa, J. Powell, and S. Lovestone, “Genetic variability in the insulin signalling pathway may contribute to the risk of late onset Alzheimer's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 3, pp. 261–266, 2002. View at Publisher · View at Google Scholar
  8. A. B. Goodman and A. B. Pardee, “Evidence for defective retinoid transport and function in late onset Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2901–2905, 2003. View at Publisher · View at Google Scholar · View at PubMed
  9. V. Tseveleki, R. Rubio, S. S. Vamvakas et al., “Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer's disease and stroke for identifying commonly regulated and disease-specific gene changes,” Genomics, vol. 96, no. 2, pp. 82–91, 2010. View at Publisher · View at Google Scholar · View at PubMed
  10. J. C. Lambert, B. Grenier-Boley, V. Chouraki et al., “Implication of the immune system in Alzheimer's disease: evidence from genome-wide pathway analysis,” Journal of Alzheimer's Disease, vol. 20, no. 4, pp. 1107–1118, 2010. View at Publisher · View at Google Scholar · View at PubMed
  11. J. M. Hill, Y. Zhao, C. Clement, D. M. Neumann, and W. J. Lukiw, “HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling,” NeuroReport, vol. 20, no. 16, pp. 1500–1505, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. R. F. Itzhaki and M. A. Wozniak, “Herpes simplex virus type 1 in Alzheimer's disease: the enemy within,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 393–405, 2008.
  13. R. B. Pyles, “The association of herpes simplex virus and Alzheimer's disease: a potential synthesis of genetic and environmental factors,” Herpes, vol. 8, no. 3, pp. 64–68, 2001.
  14. M. A. Wozniak, A. P. Mee, and R. F. Itzhaki, “Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques,” Journal of Pathology, vol. 217, no. 1, pp. 131–138, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. C. J. Carter, “Alzheimer's disease plaques and tangles: cemeteries of a Pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction,” Neurochemistry International, vol. 58, no. 3, pp. 301–320, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. L. Letenneur, K. Pérès, H. Fleury et al., “Seropositivity to Herpes Simplex Virus antibodies and risk of Alzheimer's disease: a population-based cohort study,” PLoS ONE, vol. 3, no. 11, Article ID e3637, 2008. View at Publisher · View at Google Scholar · View at PubMed
  17. A. R. Kamer, R. G. Craig, A. P. Dasanayake, M. Brys, L. Glodzik-Sobanska, and M. J. de Leon, “Inflammation and Alzheimer's disease: possible role of periodontal diseases,” Alzheimer's and Dementia, vol. 4, no. 4, pp. 242–250, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. M. M. Esiri, S. C. Biddolph, and C. S. Morris, “Prevalence of Alzheimer plaques in AIDS,” Journal of Neurology Neurosurgery and Psychiatry, vol. 65, no. 1, pp. 29–33, 1998.
  19. J. Kountouras, M. Boziki, E. Gavalas et al., “Five-year survival after Helicobacter pylori eradication in Alzheimer disease patients,” Cognitive and Behavioral Neurology, vol. 23, no. 3, pp. 199–204, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. T. A. Ala, R. C. Doss, and C. J. Sullivan, “Reversible dementia: a case of cryptococcal meningitis masquerading as Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 6, no. 5, pp. 503–508, 2004.
  21. M. Hoffmann, J. Muniz, E. Carroll, and J. de Villasante, “Cryptococcal meningitis misdiagnosed as alzheimer's disease: complete neurological and cognitive recovery with treatment,” Journal of Alzheimer's Disease, vol. 16, no. 3, pp. 517–520, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. I. Kaklikkaya, N. Kaklikkaya, I. Birincioglu, K. Buruk, and N. Turan, “Detection of human herpesvirus 6 DNA but not human herpesvirus 7 or 8 DNA in atherosclerotic and nonatherosclerotic vascular tissues,” Heart Surgery Forum, vol. 13, no. 5, pp. E345–E349, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. G. C. Makris, M. C. Makris, V. V. Wilmot, G. Geroulakos, and M. E. Falagas, “The role of infection in carotid plaque pathogenesis and stability: the clinical evidence,” Current Vascular Pharmacology, vol. 8, no. 6, pp. 861–872, 2010.
  24. A. Nazmi, A. V. Diez-Roux, N. S. Jenny, M. Y. Tsai, M. Szklo, and A. E. Aiello, “The influence of persistent pathogens on circulating levels of inflammatory markers: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis,” BMC Public Health, vol. 10, article 706, 2010. View at Publisher · View at Google Scholar · View at PubMed
  25. A. Taniguchi, F. Nishimura, Y. Murayama et al., “Porphyromonas gingivalis infection is associated with carotid atherosclerosis in non-obese Japanese type 2 diabetic patients,” Metabolism, vol. 52, no. 2, pp. 142–145, 2003. View at Publisher · View at Google Scholar · View at PubMed
  26. C. J. Hall, L. Bouhafs, U. Dizcfalusy, and K. Sandstedt, “Cryptococcus neoformans causes lipid peroxidation; therefore it is a potential inducer of atherogenesis,” Mycologia, vol. 102, no. 3, pp. 546–551, 2010. View at Publisher · View at Google Scholar
  27. A. E. Roher, C. Esh, A. Rahman, T. A. Kokjohn, and T. G. Beach, “Atherosclerosis of cerebral arteries in Alzheimer disease,” Stroke, vol. 35, no. 11, pp. 2623–2627, 2004. View at Publisher · View at Google Scholar · View at PubMed
  28. M. van Oijen, F. J. de Jong, J. C. Witteman, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Atherosclerosis and risk for dementia,” Annals of Neurology, vol. 61, no. 5, pp. 403–410, 2007. View at Publisher · View at Google Scholar · View at PubMed
  29. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993.
  30. C. Antúnez, M. Boada, A. González-Pérez, et al., “The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer's disease,” Genome Medicine, vol. 3, no. 5, article 33, 2011. View at Publisher · View at Google Scholar · View at PubMed
  31. K. Morgan, “The three new pathways leading to Alzheimer's disease,” Neuropathology and Applied Neurobiology, vol. 37, no. 4, pp. 353–357, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. L. A. Hindorff, P. Sethupathy, H. A. Junkins, et al., “A Catalog of Published Genome-Wide Association Studies,” http://www.genome.gov/gwastudies/. Accessed [June 2011].
  33. A. I. Su, T. Wiltshire, S. Batalov et al., “A gene atlas of the mouse and human protein-encoding transcriptomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 16, pp. 6062–6067, 2004. View at Publisher · View at Google Scholar · View at PubMed
  34. C. Wu, C. Orozco, J. Boyer et al., “BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources,” Genome Biology, vol. 10, no. 11, article R130, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. J. E. Larsen, O. Lund, and M. Nielsen, “Improved method for predicting linear B-cell epitopes,” Immunome Research, vol. 2, no. 2, 2006.
  36. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar
  37. Z. Beck, B. K. Brown, G. R. Matyas, V. R. Polonis, M. Rao, and C. R. Alving, “Infection of human peripheral blood mononuclear cells by erythrocyte-bound HIV-1: effects of antibodies and complement,” Virology, vol. 412, no. 2, pp. 441–447, 2011. View at Publisher · View at Google Scholar · View at PubMed
  38. R. C. Carlisle, Y. Di, A. M. Cerny et al., “Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1,” Blood, vol. 113, no. 9, pp. 1909–1918, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. E. Gyimesi, A. J. Bankovich, T. A. Schuman, J. B. Goldberg, M. A. Lindorfer, and R. P. Taylor, “Staphylococcus aureus bound to complement receptor 1 on human erythrocytes by bispecific monoclonal antibodies is phagocytosed by acceptor macrophages,” Immunology Letters, vol. 95, no. 2, pp. 185–192, 2004. View at Publisher · View at Google Scholar · View at PubMed
  40. Y. Hatano, S. Taniuchi, M. Masuda et al., “Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils,” APMIS, vol. 117, no. 2, pp. 115–123, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. J. Li, J. P. Wang, I. Ghiran et al., “Complement receptor 1 expression on mouse erythrocytes mediates clearance of Streptococcus pneumoniae by immune adherence,” Infection and Immunity, vol. 78, no. 7, pp. 3129–3135, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. C. Spadafora, G. A. Awandare, K. M. Kopydlowski et al., “Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum,” PLoS Pathogens, vol. 6, no. 6, Article ID e1000968, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. J. H. Powers, B. L. Buster, C. J. Reist et al., “Complement-independent binding of microorganisms to primate erythrocytes in vitro by cross-linked monoclonal antibodies via complement receptor 1,” Infection and Immunity, vol. 63, no. 4, pp. 1329–1335, 1995.
  44. A. Repik, S. E. Pincus, I. Ghiran et al., “A transgenic mouse model for studying the clearance of blood-borne pathogens via human complement receptor 1 (CR1),” Clinical and Experimental Immunology, vol. 140, no. 2, pp. 230–240, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. M. Calero, T. Tokuda, A. Rostagno et al., “Functional and structural properties of lipid-associated apolipoprotein J (clusterin),” Biochemical Journal, vol. 344, no. 2, pp. 375–383, 1999. View at Publisher · View at Google Scholar
  46. S. Itagaki, H. Akiyama, H. Saito, and P. L. McGeer, “Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease,” Brain Research, vol. 645, no. 1-2, pp. 78–84, 1994.
  47. P. L. McGeer, H. Akiyama, S. Itagaki, and E. G. McGeer, “Activation of the classical complement pathway in brain tissue of Alzheimer patients,” Neuroscience Letters, vol. 107, no. 1–3, pp. 341–346, 1989. View at Publisher · View at Google Scholar
  48. C. J. Carter, “APP, APOE, complement receptor 1, clusterin and PICALM and their involvement in the herpes simplex life cycle,” Neuroscience Letters, vol. 483, no. 2, pp. 96–100, 2010. View at Publisher · View at Google Scholar · View at PubMed
  49. C. Cortes, V. P. Ferreira, and M. K. Pangburn, “Native properdin binds to Chlamydia pneumoniae and promotes complement activation,” Infection and Immunity, vol. 79, no. 2, pp. 724–731, 2011. View at Publisher · View at Google Scholar · View at PubMed
  50. A. Hasegawa, L. F. Sogo, M. Tan, and C. Sütterlin, “Host complement regulatory protein CD59 is transported to the chlamydial inclusion by a golgi apparatus-independent pathway,” Infection and Immunity, vol. 77, no. 4, pp. 1285–1292, 2009. View at Publisher · View at Google Scholar · View at PubMed
  51. Á. L. Rosas, R. S. MacGill, J. D. Nosanchuk, T. R. Kozel, and A. Casadevall, “Activation of the alternative complement pathway by fungal melanins,” Clinical and Diagnostic Laboratory Immunology, vol. 9, no. 1, pp. 144–148, 2002. View at Publisher · View at Google Scholar
  52. M. A. Gates-Hollingsworth and T. R. Kozel, “Phenotypic heterogeneity in expression of epitopes in the Cryptococcus neoformans capsule,” Molecular Microbiology, vol. 74, no. 1, pp. 126–138, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. G. Gonzalez-Valencia, G. I. Perez-Perez, R. G. Washburn, and M. J. Blaser, “Susceptibility of Helicobacter pylori to the bactericidal activity of human serum,” Helicobacter, vol. 1, no. 1, pp. 28–33, 1996.
  54. G. Hajishengallis, M. Wang, S. Liang et al., “Subversion of innate immunity by periodontopathic bacteria via exploitation of complement receptor-3,” Advances in Experimental Medicine and Biology, vol. 632, pp. 203–219, 2008.
  55. D. C. Altieri, O. R. Etingin, D. S. Fair et al., “Structurally homologous ligand binding of integrin Mac-1 and viral glycoprotein C receptors,” Science, vol. 254, no. 5035, pp. 1200–1202, 1991.
  56. G. J. Jones, J. C. Wiseman, K. J. Marr, S. Wei, J. Y. Djeu, and C. H. Mody, “In contrast to anti-tumor activity, YT cell and primary NK cell cytotoxicity for Cryptococcus neoformans bypasses LFA-1,” International Immunology, vol. 21, no. 4, pp. 423–432, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. A. Wang, S. C. Johnston, J. Chou, and D. Dean, “A systemic network for Chlamydia pneumoniae entry into human cells,” Journal of Bacteriology, vol. 192, no. 11, pp. 2809–2815, 2010. View at Publisher · View at Google Scholar · View at PubMed
  58. Z. Y. Huang, S. Hunter, P. Chien et al., “Interaction of two phagocytic host defense systems: Fcγ receptors and complement receptor 3,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 160–168, 2011. View at Publisher · View at Google Scholar · View at PubMed
  59. K. Popadiak, J. Potempa, K. Riesbeck, and A. M. Blom, “Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system,” Journal of Immunology, vol. 178, no. 11, pp. 7242–7250, 2007.
  60. M. Deckert, M. Ticchioni, B. Mari, D. Mary, and A. Bernard, “The glycosylphosphatidylinositol-anchored CD59 protein stimulates both T cell receptor ζ/ZAP-70-dependent and -independent signaling pathways in T cells,” European Journal of Immunology, vol. 25, no. 7, pp. 1815–1822, 1995. View at Publisher · View at Google Scholar · View at PubMed
  61. S. Naderi, P. Hofmann, S. Seiter, W. Tilgen, H. Abken, and U. Reinhold, “CD2-mediated CD59 stimulation in keratinocytes results in secretion of IL-1α, IL-6, and GM-CSF: implications for the interaction of keratinocytes with intraepidermal T lymphocytes,” International Journal of Molecular Medicine, vol. 3, no. 6, pp. 609–614, 1999.
  62. A. W. Jehle, S. J. Gardai, S. Li et al., “ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages,” Journal of Cell Biology, vol. 174, no. 4, pp. 547–556, 2006. View at Publisher · View at Google Scholar · View at PubMed
  63. S. W. Tas, L. B. Klickstein, S. F. Barbashov, and A. Nicholson-Weller, “C1q and C4b bind simultaneously to CR1 and additively support erythrocyte adhesion,” Journal of Immunology, vol. 163, no. 9, pp. 5056–5063, 1999.
  64. M. Sarvari, I. Vago, C. S. Weber, et al., “Inhibition of C1q-beta-amyloid binding protects hippocampal cells against complement mediated toxicity,” Journal of Neuroimmunology, vol. 137, no. 1-2, pp. 12–18, 2003.
  65. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walker, Molecular Biology of the Cell, Garland Science, New York, NY, USA, 2007.
  66. S. J. Flint, L. W. Enquist, V. R. Racaniello, and A. M. Skalka, Principles of Virology, ASM Press, Herndon, Va, USA, 2008.
  67. T. Gianni, G. Campadelli-Fiume, and L. Menotti, “Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes,” Journal of Virology, vol. 78, no. 22, pp. 12268–12276, 2004. View at Publisher · View at Google Scholar · View at PubMed
  68. H. Parker, K. Chitcholtan, M. B. Hampton, and J. I. Keenan, “Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells,” Infection and Immunity, vol. 78, no. 12, pp. 5054–5061, 2010. View at Publisher · View at Google Scholar · View at PubMed
  69. J. Pizarro-Cerdá, M. Bonazzi, and P. Cossart, “Clathrin-mediated endocytosis: what works for small, also works for big,” BioEssays, vol. 32, no. 6, pp. 496–504, 2010. View at Publisher · View at Google Scholar · View at PubMed
  70. F. Tebar, S. K. Bohlander, and A. Sorkin, “Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic,” Molecular Biology of the Cell, vol. 10, no. 8, pp. 2687–2702, 1999.
  71. C. R. Brunetti, R. L. Burke, B. Hoflack, T. Ludwig, K. S. Dingwell, and D. C. Johnson, “Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission,” Journal of Virology, vol. 69, no. 6, pp. 3517–3528, 1995.
  72. M. Molinari, C. Galli, N. Norais et al., “Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers,” Journal of Biological Chemistry, vol. 272, no. 40, pp. 25339–25344, 1997. View at Publisher · View at Google Scholar
  73. K. Nakayama and S. Wakatsuki, “The structure and function of GGAs, the traffic controllers at the TGN sorting crossroads,” Cell Structure and Function, vol. 28, no. 5, pp. 431–442, 2003. View at Publisher · View at Google Scholar
  74. E. M. Rabin, K. Gordon, M. H. Knoppers et al., “Inhibition of T cell activation and adhesion functions by soluble CD2 protein,” Cellular Immunology, vol. 149, no. 1, pp. 24–38, 1993. View at Publisher · View at Google Scholar
  75. N. C. Gauthier, P. Monzo, T. Gonzalez et al., “Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin,” Journal of Cell Biology, vol. 177, no. 2, pp. 343–354, 2007. View at Publisher · View at Google Scholar · View at PubMed
  76. P. L. W. Yun, A. A. Decarlo, C. C. Chapple, C. A. Collyer, and N. Hunter, “Binding of Porphyromonas gingivalis gingipains to human CD4+ T cells preferentially down-regulates surface CD2 and CD4 with little affect on co-stimulatory molecule expression,” Microbial Pathogenesis, vol. 38, no. 2-3, pp. 85–96, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. E. Moreno-Ruiz, M. Galán-Díez, W. Zhu et al., “Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism,” Cellular Microbiology, vol. 11, no. 8, pp. 1179–1189, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Selbach and S. Backert, “Cortactin: an Achilles' heel of the actin cytoskeleton targeted by pathogens,” Trends in Microbiology, vol. 13, no. 4, pp. 181–189, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. N. Tegtmeyer, R. Wittelsberger, R. Hartig, S. Wessler, N. Martinez-Quiles, and S. Backert, “Serine phosphorylation of cortactin controls focal adhesion kinase activity and cell scattering induced by Helicobacter pylori,” Cell Host and Microbe, vol. 9, no. 6, pp. 520–531, 2011. View at Publisher · View at Google Scholar · View at PubMed
  80. S. Cudmore, I. Reckmann, and M. Way, “Viral manipulations of the actin cytoskeleton,” Trends in Microbiology, vol. 5, no. 4, pp. 142–148, 1997. View at Publisher · View at Google Scholar
  81. H. Mustonen, A. Lepistö, S. Lehtonen, E. Lehtonen, P. Puolakkainen, and E. Kivilaakso, “CD2AP contributes to cell migration and adhesion in cultured gastric epithelium,” Biochemical and Biophysical Research Communications, vol. 332, no. 2, pp. 426–432, 2005. View at Publisher · View at Google Scholar · View at PubMed
  82. M. Lecuit, R. Hurme, J. Pizarro-Cerda, H. Ohayon, B. Geiger, and P. Cossart, “A role for α-and β-catenins in bacterial uptake,” Proceedings of the National Academy of Sciences, vol. 97, no. 18, pp. 10008–10013, 2000.
  83. S. Backert, N. Tegtmeyer, and M. Selbach, “The versatility of helicobacter pylori caga effector protein functions: the master key hypothesis,” Helicobacter, vol. 15, no. 3, pp. 163–176, 2010. View at Publisher · View at Google Scholar · View at PubMed
  84. B. Hoy, M. Löwer, C. Weydig et al., “Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion,” EMBO Reports, vol. 11, no. 10, pp. 798–804, 2010. View at Publisher · View at Google Scholar · View at PubMed
  85. A. MacIntyre, C. J. Hammond, C. S. Little, D. M. Appelt, and B. J. Balin, “Chlamydia pneumoniae infection alters the junctional complex proteins of human brain microvascular endothelial cells,” FEMS Microbiology Letters, vol. 217, no. 2, pp. 167–172, 2002. View at Publisher · View at Google Scholar
  86. M. J. Taylor, D. Perrais, and C. J. Merrifield, “A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis,” PLoS Biology, vol. 9, no. 3, Article ID e1000604, 2011. View at Publisher · View at Google Scholar · View at PubMed
  87. A. S. Nicot, A. Toussaint, V. Tosch et al., “Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy,” Nature Genetics, vol. 39, no. 9, pp. 1134–1139, 2007. View at Publisher · View at Google Scholar · View at PubMed
  88. K. Nishi and K. Saigo, “Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 27503–27517, 2007. View at Publisher · View at Google Scholar · View at PubMed
  89. H. T. McMahon, P. Wigge, and C. Smith, “Clathrin interacts specifically with amphiphysin and is displaced by dynamin,” FEBS Letters, vol. 413, no. 2, pp. 319–322, 1997. View at Publisher · View at Google Scholar
  90. E. S. Gold, R. M. Simmons, T. W. Petersen, L. A. Campbell, C. C. Kuo, and A. Aderem, “Amphiphysin IIm is required for survival of Chlamydia pneumoniae in macrophages,” Journal of Experimental Medicine, vol. 200, no. 5, pp. 581–586, 2004. View at Publisher · View at Google Scholar · View at PubMed
  91. V. Wixler, E. Laplantine, D. Geerts et al., “Identification of novel interaction partners for the conserved membrane proximal region of α-integrin cytoplasmic domains,” FEBS Letters, vol. 445, no. 2-3, pp. 351–355, 1999. View at Publisher · View at Google Scholar
  92. M. Ulanova, S. Gravelle, and R. Barnes, “The role of epithelial integrin receptors in recognition of pulmonary pathogens,” Journal of Innate Immunity, vol. 1, no. 1, pp. 4–17, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. N. Tegtmeyer, S. Wessler, and S. Backert, “Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis,” FEBS Journal, vol. 278, no. 8, pp. 1190–1202, 2011. View at Publisher · View at Google Scholar · View at PubMed
  94. P. R. Crocker and P. Redelinghuys, “Siglecs as positive and negative regulators of the immune system,” Biochemical Society Transactions, vol. 36, no. 6, pp. 1467–1471, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. E. C. Brinkman-Van der Linden and A. Varki, “New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins,” Journal of Biological Chemistry, vol. 275, no. 12, pp. 8625–8632, 2000. View at Publisher · View at Google Scholar
  96. J. R. Teuton and C. R. Brandt, “Sialic acid on herpes simplex virus type 1 envelope glycoproteins is required for efficient infection of cells,” Journal of Virology, vol. 81, no. 8, pp. 3731–3739, 2007. View at Publisher · View at Google Scholar · View at PubMed
  97. M. L. Rodrigues, S. Rozental, J. N. Couceiro, J. Angluster, C. S. Alviano, and L. R. Travassos, “Identification of N-Acetylneuraminic acid and its 9-O-acetylated derivative on the cell surface of Cryptococcus neoformans. Influence on fungal phagocytosis,” Infection and Immunity, vol. 65, no. 12, pp. 4937–4942, 1997.
  98. D. Hulínská, P. Volf, and L. Grubhoffer, “Characterization of Borrelia burgdorferi glycoconjugates and surface carbohydrates,” Zentralblatt fur Bakteriologie, vol. 276, no. 4, pp. 473–480, 1992.
  99. M. Aspholm, F. O. Olfat, J. Nordén, et al., “SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans,” PLoS Pathogens, vol. 2, no. 10, Article ID e110, 2006. View at Publisher · View at Google Scholar · View at PubMed
  100. H. J. Bennett and I. S. Roberts, “Identification of a new sialic acid-binding protein in Helicobacter pylori,” FEMS Immunology and Medical Microbiology, vol. 44, no. 2, pp. 163–169, 2005. View at Publisher · View at Google Scholar · View at PubMed
  101. U. Hallén, A. E. Björkner, and E. C. Hallberg, “Binding of the periodontitis associated bacterium Porphyromonas gingivalis to glycoproteins from human epithelial cells,” Oral Microbiology and Immunology, vol. 23, no. 5, pp. 367–371, 2008. View at Publisher · View at Google Scholar · View at PubMed
  102. A. J. Muller, J. B. DuHadaway, P. S. Donover, E. Sutanto-Ward, and G. C. Prendergast, “Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy,” Nature Medicine, vol. 11, no. 3, pp. 312–319, 2005. View at Publisher · View at Google Scholar · View at PubMed
  103. A. Müller, K. Heseler, S. K. Schmidt, K. Spekker, C. R. MacKenzie, and W. Däubener, “The missing link between indoleamine 2,3-dioxygenase mediated antibacterial and immunoregulatory effects,” Journal of Cellular and Molecular Medicine, vol. 13, no. 6, pp. 1125–1135, 2009. View at Publisher · View at Google Scholar · View at PubMed
  104. C. R. MacKenzie, K. Heseler, A. Müller, and W. Däubener, “Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines,” Current Drug Metabolism, vol. 8, no. 3, pp. 237–244, 2007. View at Publisher · View at Google Scholar
  105. L. Capuron and A. H. Miller, “Immune system to brain signaling: neuropsychopharmacological implications,” Pharmacology and Therapeutics, vol. 130, no. 2, pp. 226–238, 2011. View at Publisher · View at Google Scholar · View at PubMed
  106. E. Gulaj, K. Pawlak, B. Bien, and D. Pawlak, “Kynurenine and its metabolites in Alzheimer's disease patients,” Advances in Medical Sciences, vol. 55, no. 2, pp. 204–211, 2010. View at Publisher · View at Google Scholar · View at PubMed
  107. B. Widner, F. Leblhuber, J. Walli, G. P. Tilz, U. Demel, and D. Fuchs, “Tryptophan degradation and immune activation in Alzheimer's disease,” Journal of Neural Transmission, vol. 107, no. 3, pp. 343–353, 2000.
  108. R. G. Hamilton, D. W. MacGlashan Jr., and S. S. Saini, “IgE antibody-specific activity in human allergic disease,” Immunologic Research, vol. 47, no. 1–3, pp. 273–284, 2010. View at Publisher · View at Google Scholar · View at PubMed
  109. S. Ida, R. P. Siraganian, and A. L. Notkins, “Cell-bound and circulating IgE antibody to herpes simplex virus,” Journal of General Virology, vol. 64, no. 3, pp. 533–537, 1983.
  110. J. Lagace-Simard, J. D. Portnoy, and M. A. Wainberg, “High levels of IgE in patients suffering from frequent recurrent herpes simplex lesions,” Journal of Allergy and Clinical Immunology, vol. 77, no. 4, pp. 582–585, 1986.
  111. E. Calenoff, J. C. Zhao, E. L. Derlacki et al., “Patients with Meniere's disease possess IgE reacting with herpes family viruses,” Archives of Otolaryngology: Head and Neck Surgery, vol. 121, no. 8, pp. 861–864, 1995.
  112. A. Aceti, D. Celestino, M. Caferro et al., “Basophil-bound and serum immunoglobulin E directed against Helicobacter pylori in patients with chronic gastritis,” Gastroenterology, vol. 101, no. 1, pp. 131–137, 1991.
  113. M. H. Bluth, J. Robin, M. Ruditsky et al., “IgE anti-Borrelia burgdorferi components (p18, p31, p34, p41, p45, p60) and increased blood CD8+CD60+ T cells in children with Lyme disease,” Scandinavian Journal of Immunology, vol. 65, no. 4, pp. 376–382, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. U. Emre, N. Sokolovskaya, P. M. Roblin, J. Schachter, and M. R. Hammerschlag, “Detection of anti-Chlamydia pneumoniae IgE in children with reactive airway disease,” Journal of Infectious Diseases, vol. 172, no. 1, pp. 265–267, 1995.
  115. M. Liutu, K. Kalimo, J. Uksila, and J. Savolainen, “Extraction of ige-binding components of helicobacter pylori by immunoblotting analysis in chronic urticaria patients,” International Archives of Allergy and Immunology, vol. 126, no. 3, pp. 213–217, 2001. View at Publisher · View at Google Scholar
  116. M. Feldmesser, A. Casadevall, Y. Kress, G. Spira, and A. Orlofsky, “Eosinophil-Cryptococcus neoformans interactions in vivo and in vitro,” Infection and Immunity, vol. 65, no. 5, pp. 1899–1907, 1997.
  117. K. Ishibashi, M. Suzuki, S. Sasaki, and M. Imai, “Identification of a new multigene four-transmembrane family (MS4A) related to CD20, HTm4 and β subunit of the high-affinity IgE receptor,” Gene, vol. 264, no. 1, pp. 87–93, 2001. View at Publisher · View at Google Scholar
  118. H. Xu, Y. Yan, M. S. Williams et al., “MS4a4B, a CD20 Homologue in T Cells, Inhibits T Cell Propagation by Modulation of Cell Cycle,” PLoS ONE, vol. 5, no. 11, Article ID e13780, 2010. View at Publisher · View at Google Scholar · View at PubMed
  119. M. Li, L. Wang, X. Ren, and C. Zheng, “Host cell targets of tegument protein VP22 of herpes simplex virus 1,” Archives of Virology, vol. 156, no. 6, pp. 1079–1084, 2011. View at Publisher · View at Google Scholar · View at PubMed
  120. G. M. di Guglielmo, C. Le Roy, A. F. Goodfellow, and J. L. Wrana, “Distinct endocytic pathways regulate TGF-β receptor signalling and turnover,” Nature Cell Biology, vol. 5, no. 5, pp. 410–421, 2003. View at Publisher · View at Google Scholar · View at PubMed
  121. K. B. Reddy, M. C. Karode, A. K. Harmony, and P. H. Howe, “Interaction of transforming growth factor β receptors with apolipoprotein J/clusterin,” Biochemistry, vol. 35, no. 1, pp. 309–314, 1996. View at Publisher · View at Google Scholar · View at PubMed
  122. L. Yang, Y. Pang, and H. L. Moses, “TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression,” Trends in Immunology, vol. 31, no. 6, pp. 220–227, 2010. View at Publisher · View at Google Scholar · View at PubMed
  123. C. J. Tartari, L. Scapozza, and C. Gambacorti-Passerini, “The ALK gene, an attractive target for inhibitor development,” Current Topics in Medicinal Chemistry, vol. 11, no. 11, pp. 1406–1419, 2011. View at Publisher · View at Google Scholar
  124. L. Lamant, R. D. Gascoyne, M. M. Duplantier et al., “Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma,” Genes Chromosomes and Cancer, vol. 37, no. 4, pp. 427–432, 2003. View at Publisher · View at Google Scholar · View at PubMed
  125. N. Wang, D. Lan, M. Gerbod-Giannone et al., “ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux,” Journal of Biological Chemistry, vol. 278, no. 44, pp. 42906–42912, 2003. View at Publisher · View at Google Scholar · View at PubMed
  126. S. L. Chan, W. S. Kim, J. B. Kwok et al., “ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro,” Journal of Neurochemistry, vol. 106, no. 2, pp. 793–804, 2008. View at Publisher · View at Google Scholar · View at PubMed
  127. I. L. Van Genderen, R. Brandimarti, M. R. Torrisi, G. Campadelli, and G. Van Meer, “The phospholipid composition of extracellular herpes simplex virions differs from that of host cell nuclei,” Virology, vol. 200, no. 2, pp. 831–836, 1994. View at Publisher · View at Google Scholar · View at PubMed
  128. W. L. Steinhart, C. M. Nicolet, and J. L. Howland, “Incorporation of 32P-phosphate into membrane phospholipids during infection of cultured human fibroblasts by herpes simplex virus type 1,” Intervirology, vol. 16, no. 2, pp. 80–85, 1981.
  129. W. L. Steinhart, J. S. Busch, J. P. Oettgen, and J. L. Howland, “Sphingolipid metabolism during infection of human fibroblasts by herpes simplex virus type 1,” Intervirology, vol. 21, no. 2, pp. 70–76, 1984.
  130. V. R. Gupta, B. A. Wilson, and S. R. Blanke, “Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA,” Cellular Microbiology, vol. 12, no. 10, pp. 1517–1533, 2010. View at Publisher · View at Google Scholar · View at PubMed
  131. K. Wolf and T. Hackstadt, “Sphingomyelin trafficking in Chlamydia pneumoniae-infected cells,” Cellular Microbiology, vol. 3, no. 3, pp. 145–152, 2001. View at Publisher · View at Google Scholar
  132. S. Galdiero, A. Falanga, G. Vitiello et al., “Role of membranotropic sequences from herpes simplex virus type I glycoproteins B and H in the fusion process,” Biochimica et Biophysica Acta, vol. 1798, no. 3, pp. 579–591, 2010. View at Publisher · View at Google Scholar · View at PubMed
  133. C. J. Chrisman, P. Albuquerque, A. J. Guimaraes, E. Nieves, and A. Casadevall, “Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages,” PLoS Pathogens, vol. 7, no. 5, Article ID e1002047, 2011. View at Publisher · View at Google Scholar · View at PubMed
  134. D. Kielar, W. E. Kaminski, G. Liebisch et al., “Adenosine triphosphate binding cassette (ABC) transporters are expressed and regulated during terminal keratinocyte differentiation: a potential role for ABCA7 in epidermal lipid reorganization,” Journal of Investigative Dermatology, vol. 121, no. 3, pp. 465–474, 2003. View at Publisher · View at Google Scholar · View at PubMed
  135. E. A. Hunsperger and C. L. Wilcox, “Caspase-3-dependent reactivation of latent herpes simplez virus type 1 in sensory neuronal cultures,” Journal of NeuroVirology, vol. 9, no. 3, pp. 390–398, 2003.
  136. J. Marino, I. Stoeckli, M. Walch et al., “Chlamydophila pneumoniae derived from inclusions late in the infectious cycle induce aponecrosis in human aortic endothelial cells,” BMC Microbiology, vol. 8, article 32, 2008. View at Publisher · View at Google Scholar · View at PubMed
  137. R. V. Srinivas, Y. V. Venkatachalapathi, Z. Rui et al., “Inhibition of virus-induced cell fusion by apolipoprotein A-I and its amphipathic peptide analogs,” Journal of Cellular Biochemistry, vol. 45, no. 2, pp. 224–237, 1991.
  138. N. Tanaka, S. Abe-Dohmae, N. Iwamoto, and S. Yokoyama, “Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system,” Journal of Atherosclerosis and Thrombosis, vol. 18, pp. 274–281, 2011.
  139. J. S. Burgos, C. Ramirez, I. Sastre, and F. Valdivieso, “Apolipoprotein E genotype influences vertical transmission of herpes simplex virus type 1 in a gender specific manner,” Aging Cell, vol. 6, no. 6, pp. 841–842, 2007. View at Publisher · View at Google Scholar · View at PubMed
  140. W. Cun, J. Jiang, and G. Luo, “The C-terminal α-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus,” Journal of Virology, vol. 84, no. 21, pp. 11532–11541, 2010. View at Publisher · View at Google Scholar · View at PubMed
  141. T. Hishiki, Y. Shimizu, R. Tobita et al., “Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms,” Journal of Virology, vol. 84, no. 22, pp. 12048–12057, 2010. View at Publisher · View at Google Scholar · View at PubMed
  142. J. Turchan-Cholewo, Y. Liu, S. Gartner et al., “Increased vulnerability of ApoE4 neurons to HIV proteins and opiates: protection by diosgenin and l-deprenyl,” Neurobiology of Disease, vol. 23, no. 1, pp. 109–119, 2006. View at Publisher · View at Google Scholar · View at PubMed
  143. W. R. Lin, M. A. Wozniak, M. M. Esiri, P. Klenerman, and R. F. Itzhaki, “Herpes simplex encephalitis: involvement of apolipoprotein E genotype,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 1, pp. 117–119, 2001. View at Publisher · View at Google Scholar
  144. H. C. Gérard, E. Fomicheva, J. A. Whittum-Hudson, and A. P. Hudson, “Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells,” Microbial Pathogenesis, vol. 44, no. 4, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at PubMed
  145. C. M. Brown, E. Choi, Q. Xu, M. P. Vitek, and C. A. Colton, “The APOE4 genotype alters the response of microglia and macrophages to 17β-estradiol,” Neurobiology of Aging, vol. 29, no. 12, pp. 1783–1794, 2008. View at Publisher · View at Google Scholar · View at PubMed
  146. M. P. Vitek, C. M. Brown, and C. A. Colton, “APOE genotype-specific differences in the innate immune response,” Neurobiology of Aging, vol. 30, no. 9, pp. 1350–1360, 2009. View at Publisher · View at Google Scholar · View at PubMed
  147. M. N. Haan, A. E. Aiello, N. A. West, and W. J. Jagust, “C-reactive protein and rate of dementia in carriers and non carriers of Apolipoprotein APOE4 genotype,” Neurobiology of Aging, vol. 29, no. 12, pp. 1774–1782, 2008. View at Publisher · View at Google Scholar · View at PubMed
  148. D. Thompson, M. B. Pepys, and S. P. Wood, “The physiological structure of human C-reactive protein and its complex with phosphocholine,” Structure, vol. 7, no. 2, pp. 169–177, 1999. View at Publisher · View at Google Scholar
  149. N. de Bont, M. G. Netea, P. N. Demacker et al., “Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection,” Journal of Lipid Research, vol. 40, no. 4, pp. 680–685, 1999.
  150. D. G. Alber, K. L. Powell, P. Vallance, D. A. Goodwin, and C. Grahame-Clarke, “Herpesvirus infection accelerates atherosclerosis in the apolipoprotein E-deficient mouse,” Circulation, vol. 102, no. 7, pp. 779–785, 2000.
  151. K. Ayada, K. Yokota, K. Kobayashi, Y. Shoenfeld, E. Matsuura, and K. Oguma, “Chronic infections and atherosclerosis,” Annals of the New York Academy of Sciences, vol. 1108, pp. 594–602, 2007. View at Publisher · View at Google Scholar
  152. R. Ezzahiri, F. R. Stassen, H. A. Kurvers, M. M. van Pul, P. J. Kitslaar, and C. A. Bruggeman, “Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL-receptor, ApoE double knockout mice,” European Journal of Vascular and Endovascular Surgery, vol. 26, no. 1, pp. 88–95, 2003. View at Publisher · View at Google Scholar
  153. E. Hsich, Y. F. Zhou, B. Paigen, T. M. Johnson, M. S. Burnett, and S. E. Epstein, “Cytomegalovirus infection increases development of atherosclerosis in Apolipoprotein-E knockout mice,” Atherosclerosis, vol. 156, no. 1, pp. 23–28, 2001. View at Publisher · View at Google Scholar
  154. L. Li, E. Messas, E. L. Batista Jr., R. A. Levine, and S. Amar, “Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model,” Circulation, vol. 105, no. 7, pp. 861–867, 2002. View at Publisher · View at Google Scholar
  155. M. Naghavi, P. Wyde, S. Litovsky et al., “Influenza infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice,” Circulation, vol. 107, no. 5, pp. 762–768, 2003. View at Publisher · View at Google Scholar
  156. L. R. Portugal, L. R. Fernandes, G. C. Cesar et al., “Infection with Toxoplasma gondii increases atherosclerotic lesion in ApoE-deficient mice,” Infection and Immunity, vol. 72, no. 6, pp. 3571–3576, 2004. View at Publisher · View at Google Scholar · View at PubMed
  157. K. Ayada, K. Yokota, K. Hirai et al., “Regulation of cellular immunity prevents Helicobacter pylori-induced atherosclerosis,” Lupus, vol. 18, no. 13, pp. 1154–1168, 2009. View at Publisher · View at Google Scholar · View at PubMed
  158. M. S. Warner, R. J. Geraghty, W. M. Martinez et al., “A cell surface protein with herpesvirus entry activity (Hveb) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus,” Virology, vol. 246, no. 1, pp. 179–189, 1998. View at Publisher · View at Google Scholar · View at PubMed
  159. I. Derré, M. Pypaert, A. Dautry-Varsat, and H. Agaisse, “RNAi screen in Drosophila cells reveals the involvement of the tom complex in Chlamydia infection,” PLoS Pathogens, vol. 3, no. 10, pp. 1446–1458, 2007. View at Publisher · View at Google Scholar · View at PubMed
  160. J. Harland, P. Dunn, E. Cameron, J. Conner, and S. M. Brown, “The herpes simplex virus (HSV) protein ICP34.5 is a virion component that forms a DNA-binding complex with proliferating cell nuclear antigen and HSV replication proteins,” Journal of NeuroVirology, vol. 9, no. 4, pp. 477–488, 2003.
  161. A. Lupo, E. Cesaro, G. Montano, P. Izzo, and P. Costanzo, “ZNF224: structure and role of a multifunctional KRAB-ZFP protein,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 4, pp. 470–473, 2011. View at Publisher · View at Google Scholar · View at PubMed
  162. J. Yu, B. Shin, E. S. Park et al., “Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 322–328, 2010. View at Publisher · View at Google Scholar · View at PubMed
  163. A. Kamiya, K. Kubo, T. Tomoda et al., “A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development,” Nature Cell Biology, vol. 7, no. 12, pp. 1067–1078, 2005. View at Publisher · View at Google Scholar · View at PubMed
  164. C. Janke, K. Rogowski, D. Wloga et al., “Biochemistry: tubulin polyglutamylase enzymes are members of the TTL domain protein family,” Science, vol. 308, no. 5729, pp. 1758–1762, 2005. View at Publisher · View at Google Scholar · View at PubMed
  165. P. Gee, Y. Ando, H. Kitayama, et al., “APOBEC1-mediated editing and attenuation of HSV-1 DNA implicates an antiviral role in neurons during encephalitis,” The Journal of Virology, vol. 85, no. 19, pp. 9726–9736, 2011.
  166. S. K. Bose, W. Gibson, R. S. Bullard, and C. D. Donald, “PAX2 oncogene negatively regulates the expression of the host defense peptide human beta defensin-1 in prostate cancer,” Molecular Immunology, vol. 46, no. 6, pp. 1140–1148, 2009. View at Publisher · View at Google Scholar · View at PubMed
  167. R. Tesse, N. Santoro, P. Giordano, F. Cardinale, D. D. Mattia, and L. Armenio, “Association between defb1 gene haplotype and herpes viruses seroprevalence in children with acute lymphoblastic leukemia,” Pediatric Hematology and Oncology, vol. 26, no. 8, pp. 573–582, 2009. View at Publisher · View at Google Scholar · View at PubMed
  168. A. K. Kocsis, Z. F. Kiss, L. Tiszlavicz, Z. Tiszlavicz, and Y. Mandi, “Potential role of human beta-defensin 1 in Helicobacter pylori-induced gastritis,” Scandinavian Journal of Gastroenterology, vol. 44, pp. 289–295, 2009.
  169. B. Wiechula, K. Cholewa, A. Ekiel, M. Romanik, H. Dolezych, and G. Martirosian, “HBD-1 and hBD-2 are expressed in cervico-vaginal lavage in female genital tract due to microbial infections,” Ginekologia Polska, vol. 81, no. 4, pp. 268–271, 2010.
  170. R. Circo, B. Skerlavaj, R. Gennaro, A. Amoroso, and M. Zanetti, “Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism,” Biochemical and Biophysical Research Communications, vol. 293, no. 1, pp. 586–592, 2002. View at Publisher · View at Google Scholar · View at PubMed
  171. P. Meyer, C. Caillat, D. Topalis, J. Balzarini, and D. Deville-Bonne, “Structural basis for the specificity of thymidylate kinases from human pathogens: implications for nucleotide analogues activation,” Nucleic Acids Symposium Series, no. 53, p. 41, 2009.
  172. Y. Sawayama, M. Tatsukawa, S. Maeda, H. Ohnishi, N. Furusyo, and J. Hayashi, “Association of hyperhomocysteinemia and Chlamydia pneumoniae infection with carotid atherosclerosis and coronary artery disease in Japanese patients,” Journal of Infection and Chemotherapy, vol. 14, no. 3, pp. 232–237, 2008. View at Publisher · View at Google Scholar · View at PubMed
  173. T. Matsui, “Helicobacter pylori and Arteriosclerosis,” Gan To Kagaku Ryoho, vol. 38, no. 3, pp. 365–369, 2011.
  174. H. P. Huemer, H. J. Menzel, D. Potratz et al., “Herpes simplex virus binds to human serum lipoprotein,” Intervirology, vol. 29, no. 2, pp. 68–76, 1988.
  175. S. I. Vieira, S. Rebelo, H. Esselmann et al., “Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated,” Molecular Neurodegeneration, vol. 5, no. 1, article 40, 2010. View at Publisher · View at Google Scholar · View at PubMed
  176. N. R. Marquez-Sterling, A. C. Lo, S. S. Sisodia, and E. H. Koo, “Trafficking of cell-surface β-amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling,” Journal of Neuroscience, vol. 17, no. 1, pp. 140–151, 1997.
  177. M. S. Song, G. B. Baker, K. G. Todd, and S. Kar, “Inhibition of beta-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons,” Neuroscience, vol. 178, pp. 181–188, 2011.
  178. S. Mandrekar, Q. Jiang, C. Y. Lee, J. Koenigsknecht-Talboo, D. M. Holtzman, and G. E. Landreth, “Microglia mediate the clearance of soluble aβ through fluid phase macropinocytosis,” Journal of Neuroscience, vol. 29, no. 13, pp. 4252–4262, 2009. View at Publisher · View at Google Scholar · View at PubMed
  179. F. Wu, Y. Matsuoka, M. P. Mattson, and P. J. Yao, “The clathrin assembly protein AP180 regulates the generation of amyloid-β peptide,” Biochemical and Biophysical Research Communications, vol. 385, no. 2, pp. 247–250, 2009. View at Publisher · View at Google Scholar · View at PubMed
  180. J. R. Cirrito, J. E. Kang, J. Lee et al., “Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo,” Neuron, vol. 58, no. 1, pp. 42–51, 2008. View at Publisher · View at Google Scholar · View at PubMed
  181. M. M. Hussain, “Structural, biochemical and signaling properties of the low-density lipoprotein receptor gene family,” Frontiers in Bioscience, vol. 6, pp. D417–D428, 2001.
  182. M. Dieckmann, M. F. Dietrich, and J. Herz, “Lipoprotein receptors-an evolutionarily ancient multifunctional receptor family,” Biological Chemistry, vol. 391, no. 11, pp. 1341–1363, 2010. View at Publisher · View at Google Scholar · View at PubMed
  183. M. Deuss, K. Reiss, and D. Hartmann, “Part-time α-secretases: the functional biology of ADAM 9, 10 and 17,” Current Alzheimer Research, vol. 5, no. 2, pp. 187–201, 2008. View at Publisher · View at Google Scholar
  184. C. Sato, G. Zhao, and M. X. Ilagan, “An overview of notch signaling in adult tissue renewal and maintenance,” Current Alzheimer Research. In press.
  185. B. B. Fuchs, R. J. Tang, and E. Mylonakis, “The temperature-sensitive role of Cryptococcus neoformans ROM2 in cell morphogenesis,” PLoS ONE, vol. 2, no. 4, article e368, 2007. View at Publisher · View at Google Scholar · View at PubMed
  186. J. Mital and T. Hackstadt, “Diverse requirements for SRC-family tyrosine kinases distinguish chlamydial species,” MBio, vol. 2, no. 2, 2011. View at Publisher · View at Google Scholar · View at PubMed
  187. R. Pai, T. L. Cover, and A. S. Tarnawski, “Helicobacter pylori vacuolating cytotoxin (VacA) disorganizes the cytoskeletal architecture of gastric epithelial cells,” Biochemical and Biophysical Research Communications, vol. 262, no. 1, pp. 245–250, 1999. View at Publisher · View at Google Scholar · View at PubMed
  188. H. Takeuchi, N. Furuta, I. Morisaki, and A. Amano, “Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway,” Cellular Microbiology, vol. 13, no. 5, pp. 677–691, 2011. View at Publisher · View at Google Scholar · View at PubMed
  189. M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, “A protein factor essential for microtubule assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 5, pp. 1858–1862, 1975.
  190. P. J. Dolan and G. V. Johnson, “The role of tau kinases in Alzheimer's disease,” Current Opinion in Drug Discovery and Development, vol. 13, no. 5, pp. 595–603, 2010.
  191. Á. Zambrano, L. Solis, N. Salvadores, M. Cortés, R. Lerchundi, and C. Otth, “Neuronal cytoskeletal dynamic modification and neurodegeneration induced by infection with herpes simplex virus type 1,” Journal of Alzheimer's Disease, vol. 14, no. 3, pp. 259–269, 2008.
  192. C. J. Carter, “Alzheimer's disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner,” International Journal of Alzheimer's Disease, 2010, article 140539. View at Publisher · View at Google Scholar · View at PubMed
  193. S. B. Cheng, P. Ferland, P. Webster, and E. L. Bearer, “Herpes simplex virus dances with amyloid precursor protein while exiting the cell,” PLoS ONE, vol. 6, no. 3, Article ID e17966, 2011. View at Publisher · View at Google Scholar · View at PubMed
  194. L. Benboudjema, M. Mulvey, Y. Gao, S. W. Pimplikar, and I. Mohr, “Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides,” Journal of Virology, vol. 77, no. 17, pp. 9192–9203, 2003. View at Publisher · View at Google Scholar
  195. P. Zheng, J. Eastman, P. S. Vande, and S. W. Pimplikar, “PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14745–14750, 1998. View at Publisher · View at Google Scholar
  196. S. J. Soscia, J. E. Kirby, K. J. Washicosky et al., “The Alzheimer's disease-associated amyloid β-protein is an antimicrobial peptide,” PLoS ONE, vol. 5, no. 3, Article ID e9505, 2010. View at Publisher · View at Google Scholar · View at PubMed
  197. W. J. Lukiw, J. G. Cui, L. Y. Yuan et al., “Acyclovir or Aβ42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells,” NeuroReport, vol. 21, no. 14, pp. 922–927, 2010. View at Publisher · View at Google Scholar · View at PubMed
  198. A. Salminen, J. Ojala, A. Kauppinen, K. Kaarniranta, and T. Suuronen, “Inflammation in Alzheimer's disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors,” Progress in Neurobiology, vol. 87, no. 3, pp. 181–194, 2009. View at Publisher · View at Google Scholar
  199. K. Tahara, H. D. Kim, J. J. Jin, J. A. Maxwell, L. Li, and K. Fukuchi, “Role of toll-like receptor signalling in Aβ uptake and clearance,” Brain, vol. 129, no. 11, pp. 3006–3019, 2006. View at Publisher · View at Google Scholar · View at PubMed
  200. J.-H. Sohn, J. O. So, H. J. Hong et al., “Identification of autoantibody against beta-amyloid peptide in the serum of elderly,” Frontiers in Bioscience, vol. 14, no. 10, pp. 3879–3883, 2009. View at Publisher · View at Google Scholar
  201. A. Lleó and C. A. Saura, “γ-secretase substrates and their implications for drug development in Alzheimer's disease,” Current Topics in Medicinal Chemistry, vol. 11, no. 12, pp. 1513–1527, 2011. View at Publisher · View at Google Scholar
  202. O. Takeuchi and S. Akira, “Innate immunity to virus infection,” Immunological Reviews, vol. 227, no. 1, pp. 75–86, 2009. View at Publisher · View at Google Scholar · View at PubMed
  203. I. Zanoni and F. Granucci, “Regulation of antigen uptake, migration, and lifespan of dendritic cell by Toll-like receptors,” Journal of Molecular Medicine, vol. 88, no. 9, pp. 873–880, 2010. View at Publisher · View at Google Scholar · View at PubMed
  204. D. Y. Kim, L. A. Ingano, and D. M. Kovacs, “Nectin-1α, an immunoglobulin-like receptor involved in the formation of synapses, is a substrate for presenilin/γ-secretase-like cleavage,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49976–49981, 2002. View at Publisher · View at Google Scholar · View at PubMed
  205. M. L. Hemming, J. E. Elias, S. P. Gygi, and D. J. Selkoe, “Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements,” PLoS Biology, vol. 6, no. 10, p. e257, 2008. View at Publisher · View at Google Scholar · View at PubMed
  206. S. Bacsa, G. Karasneh, S. Dosa, J. Liu, T. Valyi-Nagy, and D. Shukla, “Syndecan-1 and syndecan-2 play key roles in herpes simplex virus type-1 infection,” Journal of General Virology, vol. 92, no. 4, pp. 733–743, 2011. View at Publisher · View at Google Scholar · View at PubMed
  207. M. Kalia, V. Chandra, S. A. Rahman, D. Sehgal, and S. Jameel, “Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection,” Journal of Virology, vol. 83, no. 24, pp. 12714–12724, 2009. View at Publisher · View at Google Scholar · View at PubMed
  208. S. Shafti-Keramat, A. Handisurya, E. Kriehuber, G. Meneguzzi, K. Slupetzky, and R. Kirnbauer, “Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses,” Journal of Virology, vol. 77, no. 24, pp. 13125–13135, 2003. View at Publisher · View at Google Scholar
  209. A. J. Smith, T. W. Schacker, C. S. Reilly, and A. T. Haase, “A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection,” Journal of Acquired Immune Deficiency Syndromes, vol. 55, no. 3, pp. 306–315, 2010. View at Publisher · View at Google Scholar · View at PubMed
  210. L. de Witte, M. Bobardt, U. Chatterji et al., “Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19464–19469, 2007. View at Publisher · View at Google Scholar · View at PubMed
  211. L. de Witte, Y. Zoughlami, B. Aengeneyndt et al., “Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation,” Immunobiology, vol. 212, no. 9-10, pp. 679–691, 2008. View at Publisher · View at Google Scholar · View at PubMed
  212. G. A. Wilke and W. J. Bubeck, “Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin—mediated cellular injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13473–13478, 2010. View at Publisher · View at Google Scholar · View at PubMed
  213. A. Jong, C. H. Wu, G. M. Shackleford et al., “Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells,” Cellular Microbiology, vol. 10, no. 6, pp. 1313–1326, 2008. View at Publisher · View at Google Scholar · View at PubMed
  214. B. D. Persson, N. B. Schmitz, C. Santiago et al., “Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens,” PLoS Pathogens, vol. 6, no. 9, Article ID e01122, 2010. View at Publisher · View at Google Scholar · View at PubMed
  215. H. Mahtout, F. Chandad, J. M. Rojo, and D. Grenier, “Porphyromonas gingivalis mediates the shedding and proteolysis of complement regulatory protein CD46 expressed by oral epithelial cells,” Oral Microbiology and Immunology, vol. 24, no. 5, pp. 396–400, 2009. View at Publisher · View at Google Scholar · View at PubMed
  216. H. Wang, Z.-Y. Li, Y. Liu et al., “Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14,” Nature Medicine, vol. 17, no. 1, pp. 96–104, 2011. View at Publisher · View at Google Scholar · View at PubMed
  217. F. Hofer, M. Gruenberger, H. Kowalski et al., “Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 5, pp. 1839–1842, 1994.
  218. B. Ronacher, T. C. Marlovits, R. Moser, and D. Blaas, “Expression and folding of human very-low-density lipoprotein receptor fragments: neutralization capacity toward human rhinovirus HRV2,” Virology, vol. 278, no. 2, pp. 541–550, 2000. View at Publisher · View at Google Scholar · View at PubMed
  219. S. Jahan, S. Khaliq, B. Samreen et al., “Effect of combined siRNA of HCV E2 gene and HCV receptors against HCV,” Virology Journal, vol. 8, article 295, 2011. View at Publisher · View at Google Scholar · View at PubMed
  220. L. J. Anderson and R. Longnecker, “Epstein-Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo,” Blood, vol. 113, no. 1, pp. 108–116, 2009. View at Publisher · View at Google Scholar · View at PubMed
  221. S. Kusano and N. Raab-Traub, “An Epstein-Barr virus protein interacts with Notch,” Journal of Virology, vol. 75, no. 1, pp. 384–395, 2001. View at Publisher · View at Google Scholar · View at PubMed
  222. E. Tzahar, J. D. Moyer, H. Waterman et al., “Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network,” EMBO Journal, vol. 17, no. 20, pp. 5948–5963, 1998. View at Publisher · View at Google Scholar · View at PubMed
  223. C. Tuffereau, J. Bénéjean, D. Blondel, B. Kieffer, and A. Flamand, “Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus,” EMBO Journal, vol. 17, no. 24, pp. 7250–7259, 1998. View at Publisher · View at Google Scholar · View at PubMed
  224. T. A. Bowden, A. R. Aricescu, R. J. Gilbert, J. M. Grimes, E. Y. Jones, and D. I. Stuart, “Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2,” Nature Structural and Molecular Biology, vol. 15, no. 6, pp. 567–572, 2008. View at Publisher · View at Google Scholar · View at PubMed
  225. R. J. Orentas and J. E. Hildreth, “Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV,” AIDS Research and Human Retroviruses, vol. 9, no. 11, pp. 1157–1165, 1993.
  226. S. W. Rothwell and D. G. Wright, “Characterization of influenza A virus binding sites on human neutrophils,” Journal of Immunology, vol. 152, no. 5, pp. 2358–2367, 1994.
  227. E. Pericolini, E. Gabrielli, E. Cenci et al., “Involvement of glycoreceptors in galactoxylomannan-induced T cell death,” Journal of Immunology, vol. 182, no. 10, pp. 6003–6010, 2009. View at Publisher · View at Google Scholar · View at PubMed
  228. J. Vomaske, R. M. Melnychuk, P. P. Smith et al., “Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000304, 2009. View at Publisher · View at Google Scholar · View at PubMed
  229. M. Minami, N. Kume, T. Shimaoka et al., “Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1796–1800, 2001.
  230. O. Geiger, N. González-Silva, I. M. López-Lara, and C. Sohlenkamp, “Amino acid-containing membrane lipids in bacteria,” Progress in Lipid Research, vol. 49, no. 1, pp. 46–60, 2010. View at Publisher · View at Google Scholar · View at PubMed
  231. W. Cao, M. D. Henry, P. Borrow et al., “Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus,” Science, vol. 282, no. 5396, pp. 2079–2081, 1998. View at Publisher · View at Google Scholar
  232. N. Sevilla, S. Kunz, A. Holz et al., “Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1249–1260, 2000. View at Publisher · View at Google Scholar
  233. S. Sasaki, F. Takeshita, K. Okuda, and N. Ishii, “Mycobacterium leprae and leprosy: a compendium,” Microbiology and Immunology, vol. 45, no. 11, pp. 729–736, 2001.
  234. E. Boelen, F. R. Stassen, A. J. van der Ven et al., “Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection,” Acta Neuropathologica, vol. 114, no. 3, pp. 255–261, 2007. View at Publisher · View at Google Scholar · View at PubMed
  235. J. Miklossy, A. Kis, A. Radenovic et al., “β-amyloid deposition and Alzheimer's type changes induced by Borrelia spirochetes,” Neurobiology of Aging, vol. 27, no. 2, pp. 228–236, 2006. View at Publisher · View at Google Scholar · View at PubMed
  236. R. Piacentini, L. Civitelli, C. Ripoli et al., “HSV-1 promotes Ca2+-mediated APP phosphorylation and Aβ accumulation in rat cortical neurons,” Neurobiology of Aging, vol. 32, no. 12, pp. 2323.e13–2323.e26, 2011.
  237. M. S. Elkind, “Infectious burden: a new risk factor and treatment target for atherosclerosis,” Infectious Disorders, vol. 10, no. 2, pp. 84–90, 2010.
  238. D. Kanduc, “Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes,” Biologicals, vol. 4, pp. 245–261, 2010.
  239. D. Kanduc, A. Stufano, G. Lucchese, and A. Kusalik, “Massive peptide sharing between viral and human proteomes,” Peptides, vol. 29, no. 10, pp. 1755–1766, 2008. View at Publisher · View at Google Scholar · View at PubMed
  240. R. Ricco and D. Kanduc, “Hepatitis B virus and Homo sapiens proteome-wide analysis: a profusion of viral peptide overlaps in neuron-specific human proteins,” Biologics, no. 4, pp. 75–81, 2010.
  241. B. Trost, G. Lucchese, A. Stufano, M. Bickis, A. Kusalik, and D. Kanduc, “No human protein is exempt from bacterial motifs, not even one,” Self/Nonself, vol. 1, no. 4, pp. 328–334, 2010. View at Publisher · View at Google Scholar · View at PubMed
  242. W. M. Pardridge, “Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses,” Bioconjugate Chemistry, vol. 19, no. 7, pp. 1327–1338, 2008. View at Publisher · View at Google Scholar · View at PubMed
  243. P. Grammas, J. Martinez, and B. Miller, “Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases,” Expert Reviews in Molecular Medicine, vol. 13, Article ID e19, 2011.
  244. G. Baravalle, M. Brabec, L. Snyers, D. Blaas, and R. Fuchs, “Human Rhinovirus Type 2-Antibody Complexes Enter and Infect Cells via Fc-γ Receptor IIB1,” Journal of Virology, vol. 78, no. 6, pp. 2729–2737, 2004. View at Publisher · View at Google Scholar
  245. D. L. Mallery, W. A. McEwan, S. R. Bidgood, G. J. Towers, C. M. Johnson, and L. C. James, “Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21),” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 19985–19990, 2010. View at Publisher · View at Google Scholar · View at PubMed
  246. M. Jaume, M. S. Yip, C. Y. Cheung, et al., “Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway,” The Journal of Virology, vol. 85, no. 20, pp. 10582–10597, 2011.
  247. Y. N. Li, X. J. Qin, F. Kuang et al., “Alterations of Fc γ receptor I and Toll-like receptor 4 mediate the antiinflammatory actions of microglia and astrocytes after adrenaline-induced blood-brain barrier opening in rats,” Journal of Neuroscience Research, vol. 86, no. 16, pp. 3556–3565, 2008. View at Publisher · View at Google Scholar · View at PubMed
  248. C. J. Carter, “Epstein-Barr and other viral mimicry of autoantigens, myelin and vitamin D related proteins, and of EIF2B, the cause of vanishing white matter disease: massive mimicry of multiple sclerosis relevant proteins by the Synechococcus phage,” Immunopharmacology and Immunotoxicology. In press.
  249. C. J. Carter, “Pathogen and autoantigen homologous regions within the cystic fibrosis transmembrane conductance regulator (CFTR) protein suggest an autoimmune treatable component of cystic fibrosis,” FEMS Immunology & Medical Microbiology, vol. 62, no. 2, pp. 197–214, 2011.
  250. C. J. Carter, “Schizophrenia: a pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes,” Journal of Pathogens, vol. 2011, Article ID 128318, 37 pages, 2011. View at Publisher · View at Google Scholar
  251. A. J. Espay and K. K. Henderson, “Postencephalitic parkinsonism and basal ganglia necrosis due to Epstein-Barr virus infection,” Neurology, vol. 76, no. 17, pp. 1529–1530, 2011. View at Publisher · View at Google Scholar · View at PubMed
  252. F. Roselli, I. Russo, A. Fraddosio et al., “Reversible Parkinsonian syndrome associated with anti-neuronal antibodies in acute EBV encephalitis: a case report,” Parkinsonism and Related Disorders, vol. 12, no. 4, pp. 257–260, 2006. View at Publisher · View at Google Scholar · View at PubMed
  253. J. Woulfe, H. Hoogendoorn, M. Tarnopolsky, and D. G. Munoz, “Monoclonal antibodies against Epstein-Barr virus cross-react with alpha-synuclein in human brain,” Neurology, vol. 55, no. 9, pp. 1398–1401, 2000.
  254. C. J. Carter, “Extensive viral mimicry of 22 AIDS-related autoantigens by HIV-1 proteins and pathway analysis of 561 viral/human homologues suggest an initial treatable autoimmune component of AIDS,” FEMS Immunology & Medical Microbiology, vol. 63, no. 2, pp. 254–268, 2011. View at Publisher · View at Google Scholar · View at PubMed
  255. D. Kanduc, “The self/nonself issue a confrontation between proteomes,” Self/Nonself, vol. 1, no. 3, pp. 255–258, 2010. View at Publisher · View at Google Scholar · View at PubMed
  256. L. Jones, P. A. Holmans, M. L. Hamshere et al., “Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease,” PLoS ONE, vol. 5, no. 11, Article ID e13950, 2010. View at Publisher · View at Google Scholar · View at PubMed
  257. D. Phillips, L. Prentice, M. Upadhyaya et al., “Autosomal dominant inheritance of autoantibodies to thyroid peroxidase and thyroglobulin—studies in families not selected for autoimmune thyroid disease,” Journal of Clinical Endocrinology and Metabolism, vol. 72, no. 5, pp. 973–975, 1991.
  258. N. S. Zuckerman, H. Hazanov, M. Barak et al., “Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases,” Journal of Autoimmunity, vol. 35, no. 4, pp. 325–335, 2010. View at Publisher · View at Google Scholar · View at PubMed
  259. J. H. Rho, W. Zhang, M. Murali, M. H. Roehrl, and J. Y. Wang, “Human proteins with affinity for dermatan sulfate have the propensity to become autoantigens,” American Journal of Pathology, vol. 178, no. 5, pp. 2177–2190, 2011. View at Publisher · View at Google Scholar · View at PubMed
  260. T. Wadström and Å. Ljungh, “Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: key events in microbial pathogenicity,” Journal of Medical Microbiology, vol. 48, no. 3, pp. 223–233, 1999.
  261. H. Rosenmann, N. Grigoriadis, D. Karussis et al., “Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein,” Archives of Neurology, vol. 63, no. 10, pp. 1459–1467, 2006. View at Publisher · View at Google Scholar · View at PubMed
  262. S. Capsoni, G. Ugolini, A. Comparini, F. Ruberti, N. Berardi, and A. Cattaneo, “Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6826–6831, 2000. View at Publisher · View at Google Scholar
  263. I. Ferrer, R. M. Boada, M. L. Sánchez Guerra, M. J. Rey, and F. Costa-Jussà, “Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease,” Brain Pathology, vol. 14, no. 1, pp. 11–20, 2004.
  264. R. Furlan, E. Brambilla, F. Sanvito et al., “Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice,” Brain, vol. 126, no. 2, pp. 285–291, 2003. View at Publisher · View at Google Scholar
  265. A. J. Rozemuller, W. A. van Gool, and P. Eikelenboom, “The neuroinflammatory response in plaques and amyloid angiopathy in Alzheimer's disease: therapeutic implications,” Current Drug Targets, vol. 4, no. 3, pp. 223–233, 2005. View at Publisher · View at Google Scholar
  266. D. Vacirca, C. Barbati, B. Scazzocchio, et al., “Anti-ATP synthase autoantibodies from patients with Alzheimer's disease reduce extracellular HDL level,” Journal of Alzheimer's Disease, vol. 26, no. 3, pp. 441–445, 2011.
  267. D. Vacirca, F. Delunardo, P. Matarrese et al., “Autoantibodies to the adenosine triphosphate synthase play a pathogenetic role in Alzheimer's disease,” Neurobiology of Aging. In press.
  268. P. Foley, H. F. Bradford, M. Docherty et al., “Evidence for the presence of antibodies to cholinergic neurons in the serum of patients with Alzheimer's disease,” Journal of Neurology, vol. 235, no. 8, pp. 466–471, 1988.
  269. R. G. Nagele, P. M. Clifford, G. Siu, et al., “Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-γ1-42 deposition,” Journal of Alzheimer's Disease, vol. 25, no. 4, pp. 605–622, 2011.
  270. L. Koval, O. Lykhmus, O. Kalashnyk, et al., “The presence and origin of autoantibodies against α4 and α7 nicotinic acetylcholine receptors in the human blood: possible relevance to Alzheimer's pathology,” Journal of Alzheimer's Disease, vol. 25, no. 4, pp. 747–761, 2011.
  271. S. Mruthinti, J. J. Buccafusco, W. D. Hill et al., “Autoimmunity in Alzheimer's disease: increased levels of circulating IgGs binding Aβ and RAGE peptides,” Neurobiology of Aging, vol. 25, no. 8, pp. 1023–1032, 2004. View at Publisher · View at Google Scholar · View at PubMed
  272. M. A. Gruden, T. B. Davidova, M. Mališauskas et al., “Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: autoantibodies to Aβ(25-35) oligomers, S100b and neurotransmitters,” Journal of Neuroimmunology, vol. 186, no. 1-2, pp. 181–192, 2007. View at Publisher · View at Google Scholar · View at PubMed
  273. H. B. D. Kettlewell, “Selection experimants on industrial melanism in the Lepidoptera,” Heredity, vol. 9, pp. 323–342, 1955.
  274. J. S. Burgos, C. Ramirez, I. Sastre, and F. Valdivieso, “Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA,” Journal of Virology, vol. 80, no. 11, pp. 5383–5387, 2006. View at Publisher · View at Google Scholar · View at PubMed
  275. S. Li, D. Carpenter, C. Hsiang, S. L. Wechsler, and C. Jones, “Herpes simplex virus type 1 latency-associated transcript inhibits apoptosis and promotes neurite sprouting in neuroblastoma cells following serum starvation by maintaining protein kinase B (AKT) levels,” Journal of General Virology, vol. 91, no. 4, pp. 858–866, 2010. View at Publisher · View at Google Scholar · View at PubMed
  276. C. L. Wilcox and E. M. Johnson Jr., “Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro,” Journal of Virology, vol. 61, no. 7, pp. 2311–2315, 1987.
  277. V. Camarena, M. Kobayashi, J. Y. Kim et al., “Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons,” Cell Host and Microbe, vol. 8, no. 4, pp. 320–330, 2010. View at Publisher · View at Google Scholar · View at PubMed
  278. S. E. Counts, M. Nadeem, J. Wuu, S. D. Ginsberg, H. U. Saragovi, and E. J. Mufson, “Reduction of cortical TrkA but not p75NTR protein in early-stage Alzheimer's disease,” Annals of Neurology, vol. 56, no. 4, pp. 520–531, 2004. View at Publisher · View at Google Scholar · View at PubMed
  279. S. Kheirvari, K. Uezu, S. Yamamoto, and Y. Nakaya, “High-dose dietary supplementation of vitamin A induces brain-derived neurotrophic factor and nerve growth factor production in mice with simultaneous deficiency of vitamin A and zinc,” Nutritional Neuroscience, vol. 11, no. 5, pp. 228–234, 2008. View at Publisher · View at Google Scholar · View at PubMed
  280. B. Jiang, E. Y. Liao, L. M. Tan, R. C. Dai, Z. J. Xiao, and H. J. Liao, “Effects of long-term replacement therapy of compound nylestriol tablet or low-dose 17 beta-estradiol on the expression of nerve growth factor in OVX rat hippocampal formation,” Zhong Nan Da Xue Xue Bao. Yi Xue Ban, vol. 29, no. 5, pp. 529–533, 2004.
  281. R. D. Vicetti Miguel, B. S. Sheridan, S. A. K. Harvey, R. S. Schreiner, R. L. Hendricks, and T. L. Cherpes, “17-β estradiol promotion of herpes simplex virus type 1 reactivation is estrogen receptor dependent,” Journal of Virology, vol. 84, no. 1, pp. 565–572, 2010. View at Publisher · View at Google Scholar · View at PubMed
  282. M. I. Geerlings, L. J. Launer, F. H. de Jong et al., “Endogenous estradiol and risk of dementia in women and men: the Rotterdam study,” Annals of Neurology, vol. 53, no. 5, pp. 607–615, 2003. View at Publisher · View at Google Scholar · View at PubMed
  283. G. Ravaglia, P. Forti, F. Maioli et al., “Endogenous sex hormones as risk factors for dementia in elderly men and women,” Journals of Gerontology, vol. 62, no. 9, pp. 1035–1041, 2007.
  284. C. Clement, P. S. Bhattacharjee, H. E. Kaufman, and J. M. Hill, “Heat-induced reactivation of HSV-1 in latent mice: upregulation in the TG of CD83 and other immune response genes and their LAT-ICP0 locus,” Investigative Ophthalmology and Visual Science, vol. 50, no. 6, pp. 2855–2861, 2009. View at Publisher · View at Google Scholar · View at PubMed
  285. J. D. Kriesel, J. Ricigliano, S. L. Spruance, H. H. Garza Jr., and J. M. Hill, “Neuronal reactivation of herpes simplex virus may involve interleukin-6,” Journal of NeuroVirology, vol. 3, no. 6, pp. 441–448, 1997.
  286. I. Walev, J. Podlech, and D. Falke, “Enhancement by TNF-alpha of reactivation and replication of latent herpes simplex virus from trigeminal ganglia of mice,” Archives of Virology, vol. 140, no. 6, pp. 987–992, 1995.
  287. J. Kálmán, A. Juhász, G. Laird et al., “Serum interleukin-6 levels correlate with the severity of dementia in down syndrome and in Alzheimer's disease,” Acta Neurologica Scandinavica, vol. 96, no. 4, pp. 236–240, 1997.
  288. F. Shalit, B. Sredni, L. Stern, E. Kott, and M. Huberman, “Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer's patients,” Neuroscience Letters, vol. 174, no. 2, pp. 130–132, 1994. View at Publisher · View at Google Scholar
  289. Y. X. Sun, L. Minthon, A. Wallmark, S. Warkentin, K. Blennow, and S. Janciauskiene, “Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 16, no. 3, pp. 136–144, 2003. View at Publisher · View at Google Scholar · View at PubMed
  290. P. Kragsbjerg, T. Vikerfors, and H. Holmberg, “Cytokine responses in patients with pneumonia caused by Chlamydia or Mycoplasma,” Respiration, vol. 65, no. 4, pp. 299–303, 1998.
  291. N. Mehmet, M. Refik, M. Harputluoglu, Y. Ersoy, N. E. Aydin, and B. Yildirim, “Serum and gastric fluid levels of cytokines and nitrates in gastric diseases infected with Helicobacter pylori,” New Microbiologica, vol. 27, no. 2, pp. 139–148, 2004.
  292. D. Delfino, L. Cianci, E. Lupis et al., “Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components,” Infection and Immunity, vol. 65, no. 6, pp. 2454–2456, 1997.
  293. S. Noisakran, W. P. Halford, L. Veress, and D. J. Carr, “Role of the hypothalamic pituitary adrenal axis and IL-6 in stress- induced reactivation of latent herpes simplex virus type 1,” Journal of Immunology, vol. 160, no. 11, pp. 5441–5447, 1998.
  294. K. L. Davis, B. M. Davis, B. S. Greenwald, et al., “Cortisol and Alzheimer's disease. I: basal studies,” American Journal of Psychiatry, vol. 143, no. 3, pp. 300–305, 1986.
  295. C. W. Huang, C. C. Lui, W. N. Chang, C. H. Lu, Y. L. Wang, and C. C. Chang, “Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer's disease,” Journal of Clinical Neuroscience, vol. 16, no. 10, pp. 1283–1286, 2009. View at Publisher · View at Google Scholar · View at PubMed
  296. A. Rodriguez, D. L. M. Sainz, J. Missry, and C. S. Foster, “The role of cyclic nucleotide mediators in latency and reactivation of HSV-1 infected neuroblastoma cells,” Eye, vol. 5, no. 5, pp. 627–635, 1991.
  297. R. L. Smith, L. I. Pizer, E. M. Johnson Jr., and C. L. Wilcox, “Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures,” Virology, vol. 188, no. 1, pp. 311–318, 1992. View at Publisher · View at Google Scholar
  298. B. M. Gebhardt and H. E. Kaufman, “Propranolol suppresses reactivation of herpesvirus,” Antiviral Research, vol. 27, no. 3, pp. 255–261, 1995. View at Publisher · View at Google Scholar
  299. B. Sainz, J. M. Loutsch, M. E. Marquart, and J. M. Hill, “Stress-associated immunomodulation and herpes simplex virus infections,” Medical Hypotheses, vol. 56, no. 3, pp. 348–356, 2001. View at Publisher · View at Google Scholar · View at PubMed
  300. R. E. Martin, J. M. Loutsch, H. H. Garza, D. J. Boedeker, and J. M. Hill, “Iontophoresis of lysophosphatidic acid into rabbit cornea induces HSV-1 reactivation: evidence that neuronal signaling changes after infection,” Molecular Vision, vol. 5, p. 36, 1999.
  301. M. K. Aghi, T. C. Liu, S. Rabkin, and R. L. Martuza, “Hypoxia enhances the replication of oncolytic herpes simplex virus,” Molecular Therapy, vol. 17, no. 1, pp. 51–56, 2009. View at Publisher · View at Google Scholar · View at PubMed
  302. Y. Hashimoto, H. Kawatsura, Y. Shiga, S. Furukawa, and T. Shigeno, “Significance of nerve growth factor content levels after transient forebrain ischemia in gerbils,” Neuroscience Letters, vol. 139, no. 1, pp. 45–46, 1992. View at Publisher · View at Google Scholar
  303. J. C. de la Torre, “The vascular hypothesis of Alzheimer's disease: bench to bedside and beyond,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 116–121, 2010. View at Publisher · View at Google Scholar · View at PubMed
  304. C. E. Isaacs, R. Kascsak, R. K. Pullarkat, W. Xu, and K. Schneidman, “Inhibition of herpes simplex virus replication by retinoic acid,” Antiviral Research, vol. 33, no. 2, pp. 117–127, 1997. View at Publisher · View at Google Scholar
  305. E. D. Toffanello, E. M. Inelmen, N. Minicuci et al., “Ten-year trends in vitamin intake in free-living healthy elderly people: the risk of subclinical malnutrition,” Journal of Nutrition, Health and Aging, vol. 15, pp. 99–103, 2010. View at Publisher · View at Google Scholar
  306. F. J. Jimenez-Jimenez, J. A. Molina, F. de Bustos, et al., “Serum levels of β-carotene, α-carotene and vitamin A in patients with Alzheimer's disease,” European Journal of Neurology, vol. 6, pp. 495–497, 1999.
  307. D. N. Frank, W. Zhu, R. B. Sartor, and E. Li, “Investigating the biological and clinical significance of human dysbioses,” Trends in Microbiology, vol. 19, no. 9, pp. 427–434, 2011. View at Publisher · View at Google Scholar · View at PubMed
  308. B. Wolozin, W. Kellman, P. Ruosseau, G. G. Celesia, and G. Siegel, “Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors,” Archives of Neurology, vol. 57, no. 10, pp. 1439–1443, 2000.
  309. M. C. Morris, D. A. Evans, J. L. Bienias et al., “Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease,” Archives of Neurology, vol. 60, no. 7, pp. 940–946, 2003. View at Publisher · View at Google Scholar · View at PubMed
  310. L. B. Lopez, D. Kritz-Silverstein, and C. E. Barrett-Connor, “High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the Rancho Bernardo study,” Journal of Nutrition, Health and Aging, vol. 15, pp. 25–31, 2010.
  311. V. Solfrizzi, F. Panza, and A. Capurso, “The role of diet in cognitive decline,” Journal of Neural Transmission, vol. 110, no. 1, pp. 95–110, 2003.
  312. P. L. McGeer, M. Schulzer, and E. G. McGeer, “Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies,” Neurology, vol. 47, no. 2, pp. 425–432, 1996.
  313. D. A. Snowdon, “Healthy aging and dementia: findings from the nun study,” Annals of Internal Medicine, vol. 139, no. 5, pp. 450–454, 2003.
  314. A. D. Smith, S. M. Smith, C. A. de Jager et al., “Homocysteine-lowering by b vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial,” PLoS ONE, vol. 5, no. 9, Article ID e12244, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at PubMed
  315. M. L. Daviglus, B. L. Plassman, A. Pirzada, et al., “Risk factors and preventive interventions for Alzheimer disease: state of the science,” Archives of Neurology, vol. 68, no. 9, pp. 1185–1190, 2011. View at Publisher · View at Google Scholar · View at PubMed
  316. X. Song, A. Mitnitski, and K. Rockwood, “Nontraditional risk factors combine to predict Alzheimer disease and dementia,” Neurology, vol. 77, no. 3, pp. 227–234, 2011. View at Publisher · View at Google Scholar · View at PubMed
  317. D. E. Barnes and K. Yaffe, “The projected effect of risk factor reduction on Alzheimer's disease prevalence,” The Lancet Neurology, vol. 10, no. 9, pp. 819–828, 2011. View at Publisher · View at Google Scholar
  318. H. B. Larman, Z. Zhao, U. Laserson et al., “Autoantigen discovery with a synthetic human peptidome,” Nature Biotechnology, vol. 29, no. 6, pp. 535–541, 2011. View at Publisher · View at Google Scholar · View at PubMed
  319. J. Miklossy, “Alzheimer's disease—a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria,” Journal of Neuroinflammation, vol. 8, pp. 90–96, 2011.
  320. E. Nagele, M. Han, C. Demarshall, B. Belinka, and R. Nagele, “Diagnosis of Alzheimer's disease based on disease-specific autoantibody profiles in human sera,” PLoS ONE, vol. 6, no. 8, Article ID e23112, 2011. View at Publisher · View at Google Scholar · View at PubMed
  321. L. Restrepo, P. Stafford, D. M. Magee, and S. A. Johnston, “Application of immunosignatures to the assessment of Alzheimer's disease,” Annals of Neurology, vol. 70, no. 2, pp. 286–295, 2011. View at Publisher · View at Google Scholar · View at PubMed